期刊文献+

基于成像光谱仪的冬小麦苗期冠层叶绿素密度监测 被引量:24

Monitoring Canopy Chlorophyll Density in Seedlings of Winter Wheat Using Imaging Spectrometer
下载PDF
导出
摘要 利用自主研发的MSI200型成像光谱仪对冬小麦苗期叶绿素密度进行遥感监测,并与ASD Fieldspc FR2500型非成像地物光谱仪测定数据相比。结果表明,两种仪器所得R720、FD660、FD550、TCARI、GNDVI、PPR(550,450)、NRI等光谱特征参量均与叶绿素密度显著相关,拟合度较高,说明MSI200型成像光谱仪测定的作物光谱数据是可靠的。对筛选出的模型进行检验,ASD Fieldspc FR2500模型的预测精度达86.61%~92.79%,MSI200达91.26%~95.54%,其中PPR对叶绿素密度预测精度最高,RMSE分别为0.8391和0.0979。与传统非成像地物光谱仪相比,成像光谱仪能够提取纯冠层光谱信息,所得模型精度高、误差小,筛选的植被指数和特征波段对于航天、航空遥感器的定标有重要意义。 Imaging spectrometer is a new kind of remote sensing sensor, which receives images of ground objects and their spectrum components. It has great potentials in accurately quantitative analysis with remote sensing of high spatial and spectral resolutions. MSI200 is an imaging spectrometer manufactured by the authors. It was used in this study to monitor canopy chlorophyll density in winter wheat (Triticum aestivum L.) at seedling stage in comparison with ASD Fieldspc FR2500, a well-known non-imaging spectrometer. Correlation analysis showed that R720, FD660, FD550, TCARI, GNDVI, PPR (550, 450), and NRI obtained by the 2 spectrometers were both significantly correlated (P〈0.01) with canopy chlorophyll density. This primarily indicated the reliability of MSI200. The precisions of predicted model on chlorophyll density were 91.26-95.54% and 86.61-92.79% for MSI200 and ASD Fieldspc FR2500, respectively. Among these parameters, PPR was the best one to monitor canopy chlorophyll density with root mean square error (RMSE) of 0.0979 and 0.8391 for MSI200 and ASD Fieldspc FR2500, respectively. Compared with the traditional non-imaging spectrometers, MSI200 predicted better the canopy chlorophyll density in wheat with smaller errors, and the selected wavelengths were important to spaceflight and airborne remote sense.
出处 《作物学报》 CAS CSCD 北大核心 2008年第10期1812-1817,共6页 Acta Agronomica Sinica
基金 国家高技术研究发展计划(863计划)项目(2006AA10A302 2006AA10Z207)
关键词 冬小麦 苗期 冠层 叶绿素密度 MSI200型成像光谱仪 ASD Fieldspc FR2500型非成像地物光谱仪 Winter wheat Seedling Canopy Chlorophyll density Imaging spectrometer MSI200 Non-imaging spectrometer ASD Fieldspc FR2500
  • 相关文献

参考文献12

  • 1吉海彦,王鹏新,严泰来.冬小麦活体叶片叶绿素和水分含量与反射光谱的模型建立[J].光谱学与光谱分析,2007,27(3):514-516. 被引量:66
  • 2赵祥,刘素红,王培娟,王锦地,田振坤.基于高光谱数据的小麦叶绿素含量反演[J].地理与地理信息科学,2004,20(3):36-39. 被引量:53
  • 3Pu R-L(浦瑞良),Gong P(宫鹏).Hperspectral Remote Sensing and Its Applications(高光谱遥感及其应用).Beijing:Higher Education Press,2000.pp25-48
  • 4Curran P J, Dungan J L, Macler B A, Plummer S E, Peterson D L. Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration. Remote Sens Environ, 1992, 39: 153-166
  • 5ZhangX-Z(张宪政).A comparison of methods of measurement of chlorophyll in plants[J].沈阳农业大学学报,1985,16(4):81-84.
  • 6Rouse J W, Haas R H, Schell J A, Deering D W, Harlan J C. Monitoring the Vernal Advancement of Retrogradation of Natural Vegetation, NASA/GSFC, Type Ⅲ, Final Report, Greenbelt, MD, USA. 1974
  • 7Gamon J A, Penuelas J, Field C B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens Environ, 1992, 41:35-44
  • 8Metternicht G. Vegetation indices derived from highresolution airborne videography for precision crop management. Int J Remote Sens, 2003, 24:2855-2877
  • 9Gitelson A A, Kaufman Y J, Merzlyak M N. Use of a green channel in remote sensing of global vegetation from EOSMODIS. Remote Sens Environ, 1996, 58:289-298
  • 10Schleicher T D, Bausch W C, Delgado J A, Ayers P D. Evaluation and refinement of the nitrogen reflectance index (NRI) for site-specific fertilizer management. In: ASAE Annual International Meeting Report, ASAE Paper No. 01-11151. St. Joseph, MI USA. 2001

二级参考文献15

  • 1苏理宏,李小文,梁顺林,王锦地.典型地物波谱库的数据体系与波谱模拟[J].地球信息科学,2002,4(4):7-15. 被引量:33
  • 2张洪艳,丁东,宋立强,谷琳娜,杨鹏,唐玉国.血糖无创监测中近红外漫反射光谱技术的研究[J].光谱学与光谱分析,2005,25(6):882-885. 被引量:8
  • 3HANSEN P M, SCHJOERRING J K. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression[J]. Remote Sensing of Environment,2003,86:542-553.
  • 4HELLANDI S,NAEST,ISAKSSONT.Related versions of the multiplicative scatter correction method for preprcoessing spectroscopic data[J]. Chemometrics and Intelligent Laboratory Systems,1995,29:233-241.
  • 5CANDOLFI A, MAESSCHALCK R D, JOUAN-RIMBAUD D,et al. The influence of data pre-processing in the pattern recognition of excipients near-infrared spectra[J]. Phaxmaceutical and Biomedical Analysis, 1999,21:115-132.
  • 6GELADI P,KOWALSKI B R.Partial least-squares regression: a tutorial[J]. Analytica Chinica Acta, 1986,185:1-17.
  • 7MINOLTACL ChlornphyⅡSPAD-502instructionmanual[A].Radiometric Instruments Operations[C].1989.17-21.
  • 8Card D H, Peterson D L. Matson P A, et al. Remote Sens. Environ. , 1988, 26: 123.
  • 9Geladi P, Kowalski B R. Anal. Chim Acta. , 1986, 185: 1,19.
  • 10王兆军.均匀设计抽样的小样本均匀性[J].南开大学学报(自然科学版),1997,30(1):27-30. 被引量:3

共引文献107

同被引文献407

引证文献24

二级引证文献246

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部