期刊文献+

粒子群优化算法在函数优化中的应用及参数分析 被引量:6

Application of Particle Swarm Optimization method in function optimization and parameter analysis
下载PDF
导出
摘要 为了更深入地分析探讨粒子群优化算法的性能,采用两种基本改进策略在MATLAB7.0中对几个典型测试函数的优化问题进行了实验,即单独采用线性递减惯性权重策略以及在其基础上再加入收缩因子法,给出了这两种策略下函数的在线性能、离线性能变化图。为指导参数选取,用图示方式给出了不同参数组合对收敛性的影响。结论是:采用线性递减惯性权重策略加上收缩因子法比单独采用线性递减惯性权重策略的收敛性能好。若取固定惯性权重w,则w越小,收敛速度越快。 To analyse the performance of particle swarm optimization method deeply,this paper uses two basic improved strategies to experiment several standard test functions optimization problem in the MATLAB 7.0 software,one of the strategies is linear inertia weight reduction only,the other is rejoining the constriction factor.The online and off-line performances are given to the two strategies.In order to guide the parameter selecting,we present the effect of convergence on different parameter combination through many charts.The conclusion is that the convergence of the strategy of inertia weight reduction adding the constriction factor is better than that of the strategies of linear inertia weight reduction only.And if we adopt fixed inertia weight w,the convergence rate is more rapid when the w is lesser.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第28期53-54,90,共3页 Computer Engineering and Applications
基金 教育部科学技术研究重点项目(No.107106) 教育部高等学校科技创新工程重大项目培育基金。
关键词 粒子群优化 惯性权重 收缩因子 收敛性 Particle Swarm Optimization(PSO) inertia weight constriction factor convergence
  • 相关文献

参考文献4

  • 1Shi Y H,Eberhart R C.Parameter selection in particle swarm optimization[C]//Evolutionary Programming VII:Proc EP98.New York: Springer-Verlag, 1998 : 591-600.
  • 2Eberhart R C,Shi Y H.Comparing inertia weights and constriction factors in particle swarm optimization[C]//Proceedings of the IEEE Congress on Evolutionary Computation,San Diego, CA, 2000: 84-88.
  • 3Shi Y H,Eberhart R C.Empirical study of particle swarm optimization[C]//Proceedings of the 1999 Congress on Evolutionary Computation.Washington D C, Piscataway, NJ :IEEE Service Center, 1999 : 1945-1950.
  • 4Clerc M.The swarm and the queen:towards a deterministic and adaptive particle swarm optimization[C]//Proceedings of the 1999 Congress on Evolutionary Computation.Washington D C,Piscataway,NJ:IEEE Service Center,1999 :1951-1957.

同被引文献42

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部