期刊文献+

一种基于代表点和点密度的聚类算法 被引量:2

New clustering algorithm based on representatives and point density
下载PDF
导出
摘要 针对基于密度的聚类方法不能发现密度分布不均的数据样本的缺陷,提出了一种基于代表点和点密度的聚类算法。算法通过检查数据库中每个点的k近邻来寻找聚类。首先选取一个种子点作为类的第一个代表点,其k近邻为其代表区域,如果代表区域中的点密度满足密度阈值,则将该点作为一个新的代表点,如此反复地寻找代表点,这些区域相连的代表点及其代表区域将构成一个聚类。实验结果表明,该算法能够发现任意形状、大小和密度的聚类。 Aimed to solve the problem that the density-based clustering algorithm dose not work well when data distribution is not even,a new clustering algorithm based on representatives and point density is provided.The algorithm discovers the clusters by examining k neighbors of each point in the data base.It chooses a seed point as the first representative and the representative's k neighbors as its represent area.If the point in the represent areas satisfies the density threshold,this point will be a new representative.And repeating searching like this,all the linked represent areas and representatives will be a cluster. Experimental results show that this algorithm can discover clusters with arbitrary shapes and densities at different levels.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第28期136-139,共4页 Computer Engineering and Applications
关键词 数据挖掘 聚类 点密度 代表点 密度阈值 data mining clustering point density representative density threshold
  • 相关文献

参考文献9

  • 1Han JW,Kambr M.Data mining concepts and techniques[M].Beijing:Higher Education Press,2001.
  • 2Ester M,Kregel H P,Sander J,et al.A density-based algorithm for discovering clusters in large spatial databases with noise[C]//Proceedings of 2nd International Conference on Knowledge Discovery and Data Mining, Portland , Oregon, U S A,1996.
  • 3Ankerst M,Breunig M,Kriegel H P,et al.OPTICS:Ordering Points To Identify the Clustering Structure[C]//Proc ACM SIGMOD'99,Int Conf on Management of Data,Philadelphia, PA, 1999.
  • 4Lin Chih-Yang,Chang Chin-Chen,Lin Chia-Chen.A new densitybased scheme for clustering based on genetic algorithm[J].Fundamenta Informatieae,2005,68(4) :315-331.
  • 5Ma Daoying,Zhang Aidong.An adaptive density-based clustering algorithm for spatial database with noise[C]//ICDM'04.Fourth IEEE International Conference on Data Mining,1-4 Nov 2004:467-470.
  • 6Dash M,Liu M,Xu X.1 +1 >2 : merging distance and density based clustering[C]//Proc of 7th Int Conf Database Systems for Advanced Applications(DASFAA'01 ) ,Hong Kong,April 2001 : 18-20.
  • 7马帅,王腾蛟,唐世渭,杨冬青,高军.一种基于参考点和密度的快速聚类算法[J].软件学报,2003,14(6):1089-1095. 被引量:108
  • 8Derya Birant,Alp Kut.ST-DBSCAN:an algorithm for clustering spatial-temporal data[J].Data & Knowledge Engineering,2007,60 ( 1 ) : 208-221.
  • 9George K,Han E H,Kumar V.CHAMELEON:a hierarchical clustering algorithm using dynamic modeling[J].IEEE Computer,1999, 27(3 ) : 329-341.

二级参考文献8

  • 1Han JW, Kambr M. Data Mining Concepts and Techniques. Beijing: Higher Education Press, 2001. 145-176.
  • 2Kaufan L, Rousseeuw PJ. Finding Groups in Data: an Introduction to Cluster Analysis. New York: John Wiley & Sons, 1990.
  • 3Ester M, Kriegel HP, Sander J, Xu X. A density based algorithm for discovering clusters in large spatial databases with noise. In:Simoudis E, Han JW, Fayyad UM, eds. Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining.Portland: AAAI Press, 1996. 226-231.
  • 4Guha S, Rastogi R, Shim K. CURE: an efficient clustering algorithm for large databases. In: Haas LM, Tiwary A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. "73-84.
  • 5Agrawal R, Gehrke J, Gunopolos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining application. In: Haas LM, Tiwary A, eds. Proceedings of the ACM SIGMOD International Conference on Management of Data.Seattle: ACM Press, 1998.94-105.
  • 6Alexandros N, Yannis T,Yannis M. C^2P: clustering based on closest pairs. In: Apers PMG, Atzeni P, Ceri S, Paraboschi S,Ramamohanarao K, Snodgrass RT, eds. Proceedings of the 27th International Conference on Very Large Data Bases. Roma:Morgan Kaufmann Publishers, 2001. 331-340.
  • 7Berchtold S, Bohm C, Kriegel H-P. The pyramid-technique: towards breaking the curse of dimensionality. In: Haas LM, Tiwary A,eds. Proceedings of the ACM SIGMOD International Conference on Management of Data. Seattle: ACM Press, 1998. 142- 153.
  • 8Yu C, Ooi BC, Tan K-L, Jagadish HV. Indexing the distance: an efficient method to KNN processing. In: Apers PMG, Atzeni P,Ceri S, Paraboschi S, Ramamohanarao K, Snodgrass RT, eds. Proceedings of the 27th International Conference on Very Large Data Bases. Roma: Morgan Kaufmann Publishers, 2001. 421--430.

共引文献107

同被引文献22

  • 1刘小芳,曾黄麟,吕炳朝.点密度函数加权模糊C-均值算法的聚类分析[J].计算机工程与应用,2004,40(24):64-65. 被引量:28
  • 2石陆魁,何丕廉.一种基于密度的高效聚类算法[J].计算机应用,2005,25(8):1824-1826. 被引量:21
  • 3Altinel M, Franklin M. Efficicient filtering of XML docu- ments for selective dissemination of information[A]. Proceedings of VLDB[C]. Cairo, Egypt, 2000 : 53 - 64.
  • 4Bezdek J C, Hathaway R,Sabiu M, et al. Convergence theory for fuzzy C-means-counterexample and repairs. IEEE Transactions on Systems, Man, and Cybernetics, 1987, 17(5): 873-877.
  • 5Hall L O,Goldgof D B.Convergence of the single-pass and online fuzzy C-means algorithms. IEEE Transactions on Fuzzy Systems, 2011, 19(4): 792-794.
  • 6Zhu L,Chtmg F L,Wang S T.Generalized fuzzy C-means clustering algorithm with improved fuzzy partitions. IEEE Transactions on Systems, Man, and Cybernetics, 2009, 39(3): 578-591.
  • 7Frigui H, Krishnapuram R. Clustering by competitive agglomeration. Pattern Recognition, 1997, 30(7): 1109-1119.
  • 8Boujemaa N. Generalized competitive clustering for image segmentation. In: Proceedings of the 19th International Conference of the North American Fuzzy Information Processing Society - NAFIPS. IEEE, 2000: 133-137.
  • 9Tang C L,Wang S G,Xu W.New fuzzy C-means clustering model based on the data weighted approach. Data & Knowledge Engineering, 2010, 69(9): 887-900.
  • 10Endo Y, Hamasuna Y, Yamashiro M, et al. On semi-supervised fuzzy C-means clustering. In: Proceedings of IEEE International Conference on Fuzzy Systems, Korea: FUZZ-IEEE, 2009: 1119-1124.

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部