期刊文献+

基于频繁项集挖掘最大频繁项集和频繁闭项集 被引量:4

Mining of maximum frequent itemsets and frequent closed itemsets based on frequent itemsets
下载PDF
导出
摘要 提出了基于频繁项集的最大频繁项集(BFI-DMFI)和频繁闭项集挖掘算法(BFI-DCFI)。BFI-DMFI算法通过逐个检测频繁项集在其集合中是否存在超集确定该项集是不是最大频繁项集;BFI-DCFI算法则是通过挖掘所有支持度相等的频繁项集中的最大频繁项集组合生成频繁闭项集。该类算法的提出,为关联规则的精简提供了一种新的解决方法。 In this paper,a new kind of algorithms BFI-DMFI (Mining Maximum Frequent Itemsets) and BFI-DCFI(Mining Frequent Closed Itemsets) is proposed.In BFI-DMFI,we can confirm whether a frequent itemsets is also a maximum frequent itemsets through detecting whether exiting their superset itemsets in frequent itemsets.In BFI-DCFI,in order to generate frequent closed itemsets,we can make use of mining maximum frequent itemsets from frequent itemsets which have equal support.This kind of algorithms provides a new method for reducing the set of association rules.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第28期146-148,共3页 Computer Engineering and Applications
基金 浙江省自然科学基金No.Y106259~~
关键词 最大频繁项集 频繁闭项集 频繁项集 关联规则 maximum frequent itemsets frequent closed itemsets frequent itemsets association rules
  • 相关文献

参考文献11

  • 1Agrawal R,Imielinski T,Swami A.Mining association rules between sets of items in large databases[C]//SIGMOD'93,Wasbington,D C, May 1993.
  • 2Agrawal R,Srikant R.Fast algorithms for mining association rules[C]// Proceedings of the 20th International Conference on VLDB,Santiago, 1994.
  • 3Han J,Pei J,Yin Y.Mining frequent patterns without candidate generation[C]//ACM SIGMOD'2000,Dallas,TX,May 2000.
  • 4Bayardo R.Efficiently mining long patterns from databases[C]//Proceedings of the ACM SIGMOD International Conference on Management of Data.New York:ACM Press, 1998.
  • 5Pasquier N,Bastide Y,Taouil R,et al.Discovering frequent closed itemsets for association rules[C]//Proc of the 7th Int Conf Database Theory(ICDT' 99), Jerusalem, Israel, Jan 1999 : 398-416.
  • 6宋余庆,朱玉全,孙志挥,陈耿.基于FP-Tree的最大频繁项目集挖掘及更新算法[J].软件学报,2003,14(9):1586-1592. 被引量:164
  • 7路松峰,卢正鼎.快速开采最大频繁项目集[J].软件学报,2001,12(2):293-297. 被引量:113
  • 8Grahne G,Zhu JF.High performance mining of maximal frequent itemsets[C]//Proc of the 6th SIAM Int'l Workshop on High Performance Data Mining(HPDM 2003).
  • 9Pei J,Han J,Mao R.CLOSET:an efficient algorithm for mining frequent closed itemsets[C]//Proe 2000 ACM SIGMOD Int Conf Workshop Data Mining and Knowledge Diseovery(DMKD'00), Dallas, TX, May 2000:11-20.
  • 10Wang J,Han J,Pei J.CLOSET+:searching for the best strategies for mining frequent closed itemsets[C]//Proc 2003 ACM SIGMOD Int Conf Knowledge Discovery and Data Mining (KDD'03), Washington,DC, Aug 2003:236-245.

二级参考文献3

  • 1Lin Dao I,Proc the 6th European Conference on Extending Database Technology,1998年,105页
  • 2Agrawal R,Proc the 11th Inter Conference on Data Engineering,1995年,3页
  • 3路松峰,卢正鼎.快速开采最大频繁项目集[J].软件学报,2001,12(2):293-297. 被引量:113

共引文献215

同被引文献40

  • 1姜晗,贾泂.基于标记域FP-Tree快速挖掘最大频繁项集[J].计算机研究与发展,2007,44(z2):334-349. 被引量:4
  • 2杨霁琳.一种基于概念格的规则提取方法及其应用[J].计算机科学,2012,39(S3):204-206. 被引量:2
  • 3杨明,孙志挥,宋余庆.快速更新全局频繁项目集[J].软件学报,2004,15(8):1189-1197. 被引量:18
  • 4Agrawal R, Imielinski T, Swami A. Mining Assocation Rules Between Sets of Items in Large Databases[C]//Proc. of ACMSIGMOD Int'l Conf. on Management of Data. Washington D. C. USA: [s. n. ],1993.
  • 5Han Jiawei, Pei Jian, Yin Yiwei. Mining Frequent Patterns Without Candidate Generation[ C]//Proc. of the 2000 ACM - SIGMOD Int' l Conf. on Management of Data. Dallas, TX, USA:[s. n] ,2000.
  • 6Wu Fan. A New Approach to Mine Frequent Patterns Using Item - transformation Methods [ J ]. Information Systems, 2007, 32(7) : 1056 - 1072.
  • 7Park J S,Chen M S,Yu P S.Efficient parallel data mining for association rules[M]//PIssinou N K,Park E K.Proceedings of 4th International Conference on Information and Knowledge Management.New York:ACM Press,1995:31-36.
  • 8Agrawal R,Shafer J.Parallel mining of association rules[J].IEEE Trans on Knowledge and Data Engineering,1996,8(6):962-969.
  • 9Cheung D W,Han Jiawei,Fu A W,et al.A fast distributed algorithm for mining association rules[M]// Ng V T.Proceedings of 4th International Conference on Parallel and Distributed Information Systems.Florida:Harlequin Books Press,1996:31-44.
  • 10Cheung D W,Lee S D,Xiao Yongqiao.Effect of data skewness and workload balance in parallel data mining[J].IEEE Trans on Knowledge and Data Engineering,2002,14(3):498-514.

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部