期刊文献+

粗纱工艺参数相关分析及BP网络预报研究 被引量:1

Roving craft parameters’ correlation analysis and BP network forecast discussion
下载PDF
导出
摘要 在标准化企业粗纱工序生产数据的基础上,针对神经网络输入端参数组会影响最终预报结果的特点,提出分别利用相关性分析法和多元逐步回归分析法筛选对粗纱CV值(R1)和单重(R2)影响较大的参数。将筛选出的参数按重要程度由大到小依次输入BP网络,采用多输入单输出子网组方式建立了4个网络模型。训练好的模型经10组检验样本检验,其预报结果和实测结果的平均相对误差(MEP)都低于4%。用20组未参与建模的验证数据进行预报表明:相关性分析法筛选参数建立的模型对R1和R2的绝对值平均预报精度分别为2.63%和2.98%,且预报值与实测值间的相关系数分别为0.884和0.958,这些指标都优于采用多元逐步回归分析法筛选参数建立的模型。 Based on standardization of the roving working procedure data gathering from worsted mill,in view of the BP neural network input variables effecting the result,the correlation analysis and Multivariate Stepwise Regression Analysis (MSRA) have been proposed respectively to select important parameters that influence the roving CV (R~) and weight (R2).According to the important degree,the chosen parameters were inputted to BP network from large to small in turn;the four BP network models were established with the sub-network way for multi-input single output.The relative Mean Error Percent (MEP) between the forecast value of the 10 groups of testing samples and the observed value are all below 4%.Using the 20 groups of data that do not participate for modeling to forecast the roving quality,the results indicate that:the absolute average precision respectively are 2.63% and 2.98% for Ri and the R2 by the correlation analysis;also the correlation coefficients between the forecast and observed value respectively are 0.884 and 0.958;these targets are all better than using MSRA to select parameters for modeling.
作者 刘贵 于伟东
出处 《计算机工程与应用》 CSCD 北大核心 2008年第28期233-235,238,共4页 Computer Engineering and Applications
关键词 精毛纺 粗纱工序 BP网络 相关性分析 多元逐步回归 worsted roving working procedure BP neural network correlation analysis multivariate stepwise regression analysis
  • 相关文献

参考文献11

  • 1刘曾贤.精毛纺前纺各过程理论不匀率指数的研讨[J].毛纺科技,1999,27(6):5-12. 被引量:6
  • 2Dong Kui-yong,Yu Wei-dong.A worsted yarn virtual production system based on BP neural network[J].Journal of Donghua University : Eng ed, 2004,21 (4) : 34-37.
  • 3董奎勇,于伟东.基于BP神经网络的纺纱质量预报模型[J].东华大学学报(自然科学版),2005,31(2):88-92. 被引量:15
  • 4Rumelhart D E,Hinton G E,Williams R J.Learning representations by back-propagating errors[J].Nature, 1986,323 : 533-536.
  • 5Sette S,Boullart L,Van L,et al.Optimizing the fiber-to-yarn process with a combined neural network/genetic algorithm approach[J]. Text Res J, 1997,67(2) :84-92.
  • 6Ramesh M C,Rajamanickam R,Jayaraman S.The prediction of yarn tensile properties by using artificial neural networks[J].J Text Inst, 1995,86(3) :459-469.
  • 7Luo Cheng,Adams D L.Yarns strength prediction using neural networks[J].Tex Res J, 1995,65(9) :495-500.
  • 8Pynckels F,Kiekens P,Sette S,et al.Use of neural nets for determing the spinnability of fibers[J].J Text Inst,1995,86(3): 425-437.
  • 9Yin Xianggang,Yu Weidong.The virtual manufacturing model of the worsted yarn based on artificial neural networks and grey theory[J].Applied Mathematics and Computation, 2007,185 ( 1 ) : 322-332.
  • 10Hecht-Nielson R.Theory of the back-propagation neural network[C]// Proc IEEE,1989 Int Conf Neural Networks 53.

二级参考文献21

共引文献254

同被引文献3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部