期刊文献+

Latent semantic analysis for query interfaces of deep web sites 被引量:2

Deep web站点查询界面的潜在语义分析(英文)
下载PDF
导出
摘要 To further enhance the efficiencies of search engines,achieving capabilities of searching,indexing and locating the information in the deep web,latent semantic analysis is a simple and effective way.Through the latent semantic analysis of the attributes in the query interfaces and the unique entrances of the deep web sites,the hidden semantic structure information can be retrieved and dimension reduction can be achieved to a certain extent.Using this semantic structure information,the contents in the site can be inferred and the similarity measures among sites in deep web can be revised.Experimental results show that latent semantic analysis revises and improves the semantic understanding of the query form in the deep web,which overcomes the shortcomings of the keyword-based methods.This approach can be used to effectively search the most similar site for any given site and to obtain a site list which conforms to the restrictions one specifies. 为了进一步提高搜索引擎的效率,实现对deep web中所蕴含的大量有用信息的检索、索引和定位,引入潜在语义分析理论是一种简单而有效的方法.通过对作为deep web站点入口的查询界面里的表单属性进行潜在语义分析,从表单属性中挖掘出潜在语义结构,并实现一定程度上的降维.利用这种潜在语义结构,推断对应站点的数据内容并改善不同站点的相似度计算.实验结果显示,潜在语义分析修正和改善了deep web站点的表单属性的语义理解,弥补了单纯的关键字匹配带来的一些不足.该方法可以被用来实现为某一站点查找网络上相似度高的站点及通过键入表单属性给出拥有相似表单的站点列表.
出处 《Journal of Southeast University(English Edition)》 EI CAS 2008年第3期312-314,共3页 东南大学学报(英文版)
关键词 deep web information retrieval latent semantic analysis singular value decomposition deep web 信息检索 潜在语义分析 奇异值分解
  • 相关文献

参考文献2

二级参考文献12

  • 1[1]ROGERS E M.Diffusion of innovation[M].3rd ed.New York:The Free Press.1983.
  • 2[2]BASS FRANK M.A new product growth for model consumer durables[J].Management Science.1969,15(5):215-217.
  • 3Landauer T K,Dumais S T.A Solution to Plato's Problem:The Latent Semantic Analysis Theory of the Acquisition,Induction,and Representation of Knowledge[J].Psychological Review,1997,104:211-240.
  • 4Berry M W,Dumais S T,O'Brien G W.Using Linear Algebra for Intelligent Information Retrieval[J].SIAM Review,1995,7(4):573-595.
  • 5Deewester S,Dumais S T,Harshman R,et al.Indexing by Latent Semantic Analysis[J].Journal of the Society for Information Science,1990,41(6):391-407.
  • 6LIN Hong-Fei.The Mechanism of Text Title Classification Based on Examples[J].Interactive Learning Environments,2000,8(2):87-109.
  • 7LandanerT K,Foltz P W,Laham D.Introduction to Latent Semantic Analysis[J].Discourse Process,1998,25:259-284.
  • 8Berry M W.Large scale singular value computations[J].International Journal of Supercomputer Applications,1992,6(1),13-49.
  • 9林鸿飞,姚天顺.基于潜在语义索引的文本浏览机制[J].中文信息学报,2000,14(5):49-56. 被引量:29
  • 10杨守捷,刘曼华.应用潜在语义分析,探析认知科学[J].天津大学学报(社会科学版),2001,3(3):238-244. 被引量:3

共引文献4

同被引文献17

  • 1余正涛,樊孝忠,郭剑毅,耿增民.基于潜在语义分析的汉语问答系统答案提取[J].计算机学报,2006,29(10):1889-1893. 被引量:44
  • 2Wu Shengli.Applying statistical principles to data fusion in information retrieval[J].Expert Systems with Applications,2009,36(2):2997-3006.
  • 3Lanauer T K,Foltz P W,Laham D.Introduction to latent semantic analysis[J].Discourse Processes,1998,27(25):259-284.
  • 4Deerwester S,Duroais S T A.Indexing by latent semantic analysis[J].Journal of the Society for Information Science,1990,41(6):391-407.
  • 5Luo Si,Rong Jin.Adjusfing mixture weights of ganssian mixture model via regularized probabilistic latent semantic analysis[J].Lecture Notes in Computer Science,2005,3518:622-631.
  • 6Bellegarda J R.Fast update of latent semantic spaces using a linear transform framework[C]//Proceedings of IEEE International Conference on Acoustics,Speech and Signal Processing,IEEE ICASSP'02.New Jersey USA:IEEE Press,2002,1:769-772.
  • 7Akita Y,Kawahara T.Language model adaptation based on PLSA of topics and speakers for automatic transcription of panel discussions[J].IEICE Transactions on Information and Systems,2005,E88-D(3):439-444.
  • 8Artes-Rodriguez A,Figueiras-Vidal A R.Wiener extrapolation of sequences and the expectation-maximization algorithm[J].IEEE Signal Processing Letters,1996,3(9):260-262.
  • 9KDD Project[EB/OL].[2005-10-28].http://www.ecn.purdue.edu/KDDCUP/.
  • 10刘伟,孟小峰,孟卫一.Deep Web数据集成研究综述[J].计算机学报,2007,30(9):1475-1489. 被引量:136

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部