期刊文献+

一种基于模拟退火的支持向量机超参数优化算法 被引量:12

An Optimizing Algorithm of Super-parameters for SVM Based on Simulation Annealing
下载PDF
导出
摘要 基于统计学习理论的支持向量机技术以探求小样本情况下如何获得更好的机器学习规律而见长,与基于经验风险最小化原则的机器学习方法相比能够获得更佳的泛化能力,相关超参数的选择对其分类或回归性能有较大影响。针对径向基核支持向量机超参数优化问题,提出了一种改进的基于模拟退火算法的高效多目标优化算法,并详细讨论了优化寻优过程中搜索空间、初始可行解、初温和最优目标函数的设计方法。通过在多个标准数据集上的测试验证,证实了本文所提算法的可行性和有效性。 Based on the statistical learning theory support vector machine focuses on the machine learning strategies under small samples and gets better generalization ability than that of those tools based on the experience risk minimization principle. Its classing or regression performance will be affected by relative superparameters. An improved multi-object optimization algorithm based on simulated annealing is proposed and applied to super-parameters optimization of the support vector machine with a RBF kernel. Then selection of proper searching space, initial feasible solution, initial temperature and design of an optimal object function are discussed in detail. The validation on the some standard data sets is carried out and its feasibility and effectiveness are confirmed.
作者 燕飞 秦世引
出处 《航天控制》 CSCD 北大核心 2008年第5期7-11,17,共6页 Aerospace Control
关键词 支持向量机 模拟退火 多目标优化 参数优化 超参数 Support vector machine Simulated annealing Multi-object optimization Parameter optimization Super - parameter
  • 相关文献

参考文献10

  • 1V. N. Vapnik. The Nature of Statistical Learning Theory [ M ] , New York : Springer-Verlag, 1999.
  • 2Olivier Chapelle, Vladimir Vapnik, Olivier Bousquet and Sayan Mukherjee. Choosing Multiple Parameters for Support Vector Machines[ J]. Machine Learning. 2002 (46) :131 - 159.
  • 3袁小芳,王耀南.基于混沌优化算法的支持向量机参数选取方法[J].控制与决策,2006,21(1):111-113. 被引量:55
  • 4陈光英,张千里,李星.特征选择和SVM训练模型的联合优化[J].清华大学学报(自然科学版),2004,44(1):9-12. 被引量:17
  • 5Chen Pengwei, Wang Jungying and Lee Hahn-Ming. Model Selection of SVMs Using GA Approach [ C ]. 2004 IJCNN International Joint Conference on Neural Networks. Budapest, Hungary, July, 2004:2035 - 2040.
  • 6K. Duan, S. S. Keerthi and A. N. Poo. Evaluation of Simple Performance Measures for Tuning SVM Hyperparameters[J].Neurocomputing. 2003 ( 51 ) :41 - 59.
  • 7John Phan, Richard Moffitt, Jennifer Dale, John Petros, Andrew Young and May Wang. Improvement of SVM Algorithm for Microarray Analysis Using Intelligent Parameter Selection[ C ]//Proceedings of the 2005 IEEE Engineering in Medicine and Biology. Shanghai, China, September, 2005:4838-4841.
  • 8Keerthi S S, Lin C J. Asymptotic behaviors of support vector machines with Gaussian kernel[ J]. Neural computation, 2003 ( 15 ) : 1667 - 1689.
  • 9Matthew Boardman and Thomas Trappenberg. A Heuristic for Free Parameter Optimization with Support Vector Machines [ C ]//Proceedings of 2006 International Joint Conference on Neural Networks. Vancouver, Canada. July 2006 : 1337 - 1344.
  • 10Hsu Chin-Wei, Chang Chin-Chung and Lin Chin-Jen. A Practical Guide to Support Vector Classification [ DB ] , http://www, csie. ntu. edu. tw/-cjlin/papers/guide/ guide, pdf, 2003.

二级参考文献20

  • 1许建华,张学工,李衍达.支持向量机的新发展[J].控制与决策,2004,19(5):481-484. 被引量:132
  • 2董春曦,饶鲜,杨绍全,徐松涛.支持向量机参数选择方法研究[J].系统工程与电子技术,2004,26(8):1117-1120. 被引量:65
  • 3Vapnik V N. An overview of statistical learning theory [J]. IEEE Trans on Neural Networks, 1999, 10(5): 988-999.
  • 4Wijesoma W S, Ma M, Sung E. Selecting optimal personalized features for on-line signature verification using GA [A]. Proc of the IEEE Int Conf on Systems, Man & Cybernetics [C]. Nashville, TN, USA: IEEE, 2000, 4: 2740-2745.
  • 5Xin Y. Evolving artificial neural networks [J]. Proceedings of the IEEE, 1999, 87(9): 1423 -1447.
  • 6Joachims T. Making large-scale SVM learning practical. In Scholkopf B. Advances in Kernel Methods - Support Vector Learning [M]. MA: MIT Press, 1999: 169-184.
  • 7Platt J C. Fast training of support vector machines using sequential minimal optimization [A]. Scholkopf B. Advances in Kernel Methods - Support Vector Learning [C]. MA: MIT Press, 1999. 185-208.
  • 8Holland J H. Adaptation in natural and artificial systems [M]. Ann Arbor: Univ Michigan Press, 1975.
  • 9Kennedy J, Eberhart R. Particle swarm optimization [A]. Proc of the IEEE Int Conf Neural Networks [C]. Perth, WA, Austrlia: IEEE, 1995. 1942-1948.
  • 10Joachims T. Estimating the generalization performance of a SVM efficiently [A]. Proceedings of the 17th International Conference on Machine Learning [C]. San Francisco: Morgan, 2000. 431-438.

共引文献70

同被引文献107

引证文献12

二级引证文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部