期刊文献+

基于多尺度卡尔曼滤波的医学图像配准算法 被引量:1

Medical image registration algorithm based on multiscale Kalman filters
下载PDF
导出
摘要 提出了一种新的基于主成分分析和多尺度卡尔曼滤波的医学图像配准算法。利用主成分分析的方法求出两幅图像的主轴和质心,从而计算出图像间的旋转角度;利用高斯金字塔分解构造了一种自适应的卡尔曼滤波器用来提高算法的鲁棒性。对模拟图像和真实图像进行了实验,实验结果表明此方法能准确,快速地处理图像刚性配准问题。 This paper presents a new image registration method, which is based on a combination of two already well-known techniques: the principal component analysis (PCA) and multiscale pyramid decomposition. The PCA analysis is applied to find rotation. The proposed technique is shown to enjoy excellent robustness against noise. We present both simulated and real image examples to demonstrate the proposed technique.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第19期4982-4984,共3页 Computer Engineering and Design
基金 国家973重点基础研究发展计划基金项目(2003CB716103)
关键词 主成分分析 多尺度卡尔曼滤波 金字塔分解 图像配准 特征值分解 principal component analysis multiscale Kalman filters pyramid decomposition image registration eigenvalue decomposition
  • 相关文献

参考文献8

  • 1Zitova B, Flusser J. Image registration methods: A survey [J]. Image and Vision Computing,2003,21 (11):977-1000.
  • 2Pluim J P W, Maintz J B A, Viergever M A.Mutual-information based registration of medical images: A survey [J].IEEE Trans Med Imag,2003,22(8):986-1004.
  • 3Capek M, Mroz L, Wegenkittl R.Robust and fast medical registration of 3D multi-modality data sets[C].Proc Int Fed Medical and Biological Engineering, 2001:515-518.
  • 4Bulow H,Dooley L,Wermser D. Application of principal axes for registration ofNMR image[J].Pattern Recognition Letters,2000, 21:329-336.
  • 5Shekhar R, Zagrodsky V. Mutual information-based rigid and nonrigid registration of ultrasound volumes [J].IEEE Trans Med Imag, 2002(21) 1:9-22.
  • 6Akgul Y S, Kambhamettu C.A coarse-to-fine deformable contour optimization framework[J]. IEEE Trans Pattern Anal Math Intell,2003,25(2): 174-186.
  • 7Rafael C Gonzales,Richard E Woods.Digital image processing [M].2nd ed.Prentice Hall,2002.
  • 8Feng X G, Milanfar P. Multiscale principal components analysis for image local orientation estimation[C]. Pacific Grove, CA: Proceedings of the 36th Asilomar Conference on Signals, Systems and Computers, 2002.

同被引文献3

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部