期刊文献+

基于纹理和高斯密度特征的图像检索算法 被引量:5

Image retrieval algorithm based on texture and Gaussian density feature
下载PDF
导出
摘要 直接从DCT域中提取图像的特征是提高图像的检索效率的方法。直接从压缩域中提取图像的高斯密度,即计算图像在8个方向上的分段累加值,形成一个8*4的二维向量,再结合图像的纹理特征来进行图像检索。为了验证算法的可行性,建立了10000幅图像的图像库。实验结果表明,该方法能够准确地检索出目标图像,有效地提高了图像检索的精度和速度。 To improve efficiency of the image retrieval, the techniques of the direct feature extraction in DCT domain are extensively emphasized. A new algorithm for compressed image retrieval is proposed based on Gaussian density feature (GDF). This algorithm directly extract Gaussian density of 8 direction from compressed image data to construct a 2-dimention array (8*4) as an indexing key to retrieve images based on their content features and texture feature. To test and evaluate the proposed algorithms, experiments with a database of 10 000 images are carried out. In comparison with existing representative techniques, the experimental results show the su- periority of the proposed method in terms of retrieval precision and processing spbed.
出处 《计算机工程与设计》 CSCD 北大核心 2008年第19期4995-4998,共4页 Computer Engineering and Design
关键词 基于内容的图像检索 高斯密度特征 灰度共生矩阵 离散余旋变换 查准率 content-based image retrieval (CBIR) Gaussian density feature co-occurrence matrix discrete cosine transform precision
  • 相关文献

参考文献8

二级参考文献28

  • 1Niblack W, Barber R, Equiz W, et al. The QBIC project: querying images by content using color, texture and shape Research Report[R]. IBM Research Division, Almaden Research Center, 1993.
  • 2Pentland A, Picard R W, Sclaroff S. Photobook: tools for content-based manipulation of image databases (c) [J]. In :Proc Storage and Retrieval for Image and Video Databases Ⅱ, San Jose, 1 994 : 34- 47.
  • 3J Li J Z Wang,G Wirderhold. Classfication of textureed and non-textured images using region segmentation[C]. Procedding of the Seventh International Conference on Inage Processing, Vancouver B C Canda September, 2000.
  • 4Flickner M.Query by image and video content:The QBIC system[J].IEEE Computer,1995,28(9):23-32.
  • 5Manjunath B S.Color and texture descriptors[J].IEEE Trans on Circuits and Systems for Video Technology,2001,11 (6):703-715.
  • 6Feng G C,Jiang J.JPEG compressed image retrieval via statistical features[J].Pattern Recognition,2003,36(4):977-985.
  • 7Wang Liwei,Zhang Yan,Feng Jufu.On the euclidean distance of images[J].IEEE Transaction On Pattern Analysis And Machine Intelligence,2000,27(8):1334-1339.
  • 8Jinf F,Li M,Zhang H J.A unified framework for image retrieval using keyword and visual features[J].IEEE Transactions on Image Processing,2005,14(7)979-989.
  • 9Vasconcelos N,Lippman A.A multiresolution manifold distance for invariant image simijarity[J].IEEE Transactions on Multimedia,2005,7(1):127-142.
  • 10Kourous Jafari-Khouzani,Hamid Soltanian-Zadeh.Rotation-invariant multiresolution texture analysis using radon and wavelet transforms[J].IEEE Transaction On Image Processing,2005,14(6):223-231.

共引文献33

同被引文献38

引证文献5

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部