摘要
In this paper, a new four-dimensional autonomous hyperchaotic system is designed for generating complex chaotic signals. In the design, its parameters are selected according to the requirements for chaos and hyperchaos. The hyperchaotic nature is verified theoretically by using the bifurcation analysis and demonstrated experimentally by the implementation of an analogue electronic circuit. Moreover, the Field Programmable Gate Array (FPGA) technology is applied to implementing a continuous system in a digital form by using a chip of Altera Cyclone II EP2C35F484C8. The digital sequence generated from the FPGA device is observed in our experimental setup.
In this paper, a new four-dimensional autonomous hyperchaotic system is designed for generating complex chaotic signals. In the design, its parameters are selected according to the requirements for chaos and hyperchaos. The hyperchaotic nature is verified theoretically by using the bifurcation analysis and demonstrated experimentally by the implementation of an analogue electronic circuit. Moreover, the Field Programmable Gate Array (FPGA) technology is applied to implementing a continuous system in a digital form by using a chip of Altera Cyclone II EP2C35F484C8. The digital sequence generated from the FPGA device is observed in our experimental setup.
基金
Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No Y105175)
the Science investigation Foundation of Hangzhou Dianzi University, China (Grant No KYS051505010)