期刊文献+

基于形态学和细胞神经网络的边缘检测方法 被引量:2

Edge Detection Based on Morphology and Cellular Neural Network
下载PDF
导出
摘要 采用形态学方法提取二值图像的边缘,利用二值形态学与离散细胞神经网络(DT-CNN)的某种天然对应关系,将离散细胞神经网络引入形态学,将形态学运算转化为某种特定模板下的多层离散细胞神经网络,然后对该模板进行优化设计使之转化为单层离散细胞神经网络,降低了运算的复杂度。在此基础上,通过综合灰度图像像素在每个比特位上的边缘检测结果,提出了采用二值形态学提取灰度图像边缘的方法。与传统边缘提取方法Sobel和Log相比较,该方法边缘提取效果良好,收敛迅速。 Morphology is used for edge extraction of binary image. In particular, Discrete-time Cellular Neural Network (DT-CNN) is introduced into binary morphology owing to the natural corresponding relationship between them, and then the morphology operation is transformed into multi-layer DT-CNN under some specific template. Multi-layer DT-CNN is transformed into Monolayer DT-CNN by optimizing design to reduce the complexity of the operation. Therefore, we can extract the edge of gray image by synthesizing the edge detection result of each bit in the pixel. Compared with the traditional Sobel and Log operator, the method has a better performance and converges quickly.
出处 《光电工程》 EI CAS CSCD 北大核心 2008年第10期76-80,共5页 Opto-Electronic Engineering
基金 黑龙江省高校重点实验室资助项目 黑龙江省研究生创新科研项目(YJSCX2007-0034HLJ)
关键词 边缘捡测 形态学 离散细胞神经网络 edge extraction morphology discrete-time cellular neural network
  • 相关文献

参考文献11

  • 1Gonzalez Rafael, Woods Richard. Digital Image Processing: Second Edition [M]. RUAN Qiu-qi, RUAN Yu-zhi. Beijing: Publishing House of Electronic Industry, 2003.
  • 2Koren R, Yitzhaky Y. Automatic selection of edge detector parameters based on spatial and statistical measures [J]. Computer Vision and Image Understanding, 2006, 102: 204-213.
  • 3Staunton R C. Detected edge position evaluation using measured acquisition system parameters [J]. Pattern Recognition Letters, 2005, 26(11): 1609-1619.
  • 4程俊鑫.基于灰度图像的边缘检测方法研究[D].太原:太原理工大学,2008:3-5.
  • 5Serra J. Image Analysis and Mathematical Morphology [M]. New York: Academic Press, 1982.
  • 6Serra J. Image Analysis and Mathematical Morphology, Part II: Theoretical Advances [M]. New York: Academic Press, 1988.
  • 7Serra J. Introduction to mathematical morphology [J]. Computer Vision, Graphics, and Image Process, 1986, 35: 283-305.
  • 8Hatter H, Nossek J A. Discrete-Time Cellular Neural Networks [J]. International Journal of Circuit Theory and Applications, 1992, 20(4): 453-467.
  • 9Linan G, Rodriguez-Vazquez A, Espejo S, et al. ACE16K: A 128x128 Focal Plane Analog Processor with Digital I/O [C]//The 7th International Workshop on CNN and Their Applications. Frankfurt, Germany:[s. n.], 2002: 132-139.
  • 10ter Brugge M H, Nijhuis J A G, Spaanenburg L. Transformational DT-CNN design from morphological specifications [J]. IEEE Transactions on Circuits and System-I: Fundamental Theory and Applications, 1998, 45(9): 879-888.

同被引文献17

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部