摘要
传统的预测深井动压巷道围岩移近量的方法主要有:解析法、数值分析法、回归分析法、概率分析法、模糊分析法等。文章主要介绍BP神经网络对深井动压巷道围岩移近量的预测、原理及其Matlab的程序实现。通过分析表明,BP神经网络在深井动压巷道围岩移近量的预测中具有较高的精度。
Traditional methods of forecasting displacement of rockstrata around deep roadway under dynamic pressure are mainly: analytical method, numerical analytical method, regressive analytical method, probabilistic analytical method, fuzzy analytical method, etc. The paper mainly introduces how to apply Back - propagation neural network to forecasting displacement of rockstrata around deep roadway under dynamic pressure, the principle of Back- propagation neural network and its Matlab Procedure algorithm. Through analysis, the result proves to be of upper precision applying Back - propagation neural network to forecasting displacement of rockstrata around deer) roadwav under dvnamic pressure.
出处
《煤炭技术》
CAS
2008年第10期66-68,共3页
Coal Technology
基金
安徽省教育厅自然科学基金重点资助项目(2004kj106zd)
关键词
深井动压巷道
围岩移近量预测
BP神经网络
Matlab的程序算法
deep roadway under dynamic pressure
displacement forecast of roekstrata
Back - propagationneural network
Matlab procedure algorithm