期刊文献+

时频匹配滤波法用于变压器局部放电模式识别的实验研究 被引量:5

UHF partial discharge classification based on time-frequency matched filter algorithm
下载PDF
导出
摘要 局部放电模式识别对于电力变压器绝缘状况诊断具有重要意义。分析了典型变压器局部放电缺陷,建立4种放电模型,采用小波变换获取了超高频局放脉冲的三维时频谱图,该三维谱图综合反映了局放信号的3个基本特征:时间分量、频率分量和放电能量的分布。根据时频谱构造了4种局放模型的三维匹配滤波器,待测局放信号与同类型滤波器相匹配。结果表明,该方法可以有效提取出局部放电信号的主要特征和趋势。 For insulation condition assessment of HV transformer, partial discharge (PD) monitoring is one of the most effective techniques. It was analyzed the characteristic of UHF matched signal at time and frequency domain. On the basis of wavelet analysis, a three-dimensional time-frequency pattern to characterize UHF PD signal was upbuih which comprehensively reflected three basic features of PD impulses: time component, frequency component and distribution of discharging energy. The matched filters of three-dimension were constructed by mathematic model according to PD time-frequency patterns. Based on the matched three-dimensional pattern, the major features and tendency of discharge were characterized. Then measuring PD signals of three-dimension passed four parallel matched filters simultaneously and the maximum coefficients could be extracted for pattern recognition. The result shows that the method could effectively distinguish the type of PD.
出处 《中国电力》 CSCD 北大核心 2008年第10期16-19,共4页 Electric Power
基金 国家自然科学基金资助项目(50777048)
关键词 局部放电 变压器 超高频 模式识别 小波变换 时频匹配滤波法 PD transformer UHF pattern recognition wavelet transform time-frequency matched filter algorithm
  • 相关文献

参考文献5

二级参考文献25

  • 1钱勇,黄成军,江秀臣,肖燕.基于超高频法的GIS局部放电在线监测研究现状及展望[J].电网技术,2005,29(1):40-43. 被引量:166
  • 2孙才新,许高峰,唐炬,陆宠惠,侍海军.以盒维数和信息维数为识别特征量的GIS局部放电模式识别方法[J].中国电机工程学报,2005,25(3):100-104. 被引量:62
  • 3谈克雄,朱德恒,王振远,曾冬松.基于人工神经网络的局部放电识别[J].高电压技术,1996,22(1):21-24. 被引量:16
  • 4谈克雄,李福祺.局部放电识别用的几种人工神经网络[J].高电压技术,1996,22(4):3-7. 被引量:27
  • 5Kreuger F H,Gulski E Krivda A.Classification of partial discharges[J].IEEE Trans on Electrical Insulation,1993,28(6):917-931.
  • 6Morshuis P H F,Smit J J.Partial discharges at DC voltage:their mechanism,detection and analysis[J].IEEE Trans on Dielectrics and Electrical Insulation,2005,12(2):328-340.
  • 7Tian Y,Lewin P L,Sutton S J,et al.PD characterization using short duration Fourier transform of acoustic emission signals[C].IEEE International Conference on Solid Dielectrics,Toulouse,2004,7:695-698.
  • 8Sahoo N C,Salama M M A,Bartnikas R.Trends in partial discharge pattern classification:a survey[J].IEEE Trans on Dielectrics and Electrical Insulation,2005,12(2):248-264.
  • 9Satish L,Nazneen B.Wavelet-based denoising of partial discharge signals buried in excessive noise and interference[J].IEEE Trans on Dielectrics and Electrical Insulation,2003,10(2):354-367.
  • 10Satish L,Zaebg W S.Can fractal features be used for recognizing 3-d partial discharge patterns?[J].IEEE Trans on Dielectrics and Electrical Insulation,1995,2(3):352-359.

共引文献71

同被引文献58

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部