期刊文献+

阳极氧化AZ91D镁合金在氯化钠稀溶液中的腐蚀行为 被引量:6

Corrosion Behavior of Anodized AZ91D Magnesium Alloy in NaCl Aqueous Solution
下载PDF
导出
摘要 利用盐雾实验、极化曲线扫描、电化学阻抗谱和电化学噪声技术等电化学研究方法结合扫描电镜表面观测技术对AZ91D镁合金氧化膜在1%(w)氯化钠溶液中的耐蚀性能进行了评价.结果表明,氧化前后的镁合金腐蚀行为发生明显改变,如未封孔的阳极氧化膜耐中性5%氯化钠盐雾试验时间超过200h;氧化后的镁合金自腐蚀电位明显正移,点蚀诱导期延长;阳极氧化膜的高频阻抗约为裸露镁合金的数千倍,这些变化证明阳极氧化处理使镁合金获取了十分优异的耐蚀性能.首次利用分形维数Df的变化规律初步描述氧化后AZ91D镁合金的腐蚀过程.可以发现随着浸泡时间的延长,Df呈现出初期快速增长,随后出现波动,最后稍有降低的变化过程.这种现象对应于氧化后AZ91D镁合金在1%氯化钠溶液中腐蚀的三个阶段. The corrosion behavior of anodized AZ91D magnesium alloy in neutral 1%(w) NaCl aqueous solution was investigated by salt spray test, polarization curve, electrochemical impedance spectroscopy (EIS), electrochemical noise (EN) and scanning electron microscope (SEM). The results showed that the corrosion behavior of Mg alloy presented characteristic changes due to anodization. For example, the unsealed anodic film could be sustained in 5% NaCl salt spray beyond 200 h, Ecom of anodized magnesium alloy shifted up and the inductive period for pitting corrosion was obviously prolonged, and the impedance modules in high frequency of anodized alloy were several thousand times those of unanodized alloy. All these proved that anodization process made the alloy gain excellent property of anti-corrosion. The evolution of fractal dimension (Dr) was first utilized to depict the corrosion process of anodized AZ91D magnesium alloy and shown as rapid increasing in the initial, fluctuating in the medium and decreasing in the last. This evolution was related with the three different corrosion stages of anodized AZ91D magnesium alloy in 1% NaCl solution.
机构地区 浙江大学化学系
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2008年第10期1831-1838,共8页 Acta Physico-Chimica Sinica
基金 国家自然科学基金(50471043,50671095) 科技部科技条件平台建设基金(2005DKA10400-Z20) 超轻材料与表面技术教育部重点实验基金资助项目
关键词 AZ91D镁合金 阳极氧化 电化学噪声 电化学阻抗谱 分形维数 AZ91D magnesium alloy Anodization EN EIS Fractal dimension
  • 相关文献

参考文献35

  • 1Collot, J. Hommes et Fonderie, 2000, 308(11): 18
  • 2Gray, J. E.; Luan, B. J. Alloy Compd., 2002, 336:88
  • 3Mathieu, S.; Rapin, C., Hazan, J.; Steinmetz, P. Corros. Sci., 2002, 44:2737
  • 4Mathieu, S.; Rapin, C.; Steinmetz, J.; Steinmetz, P. Corros. Sci., 2003, 45:2741
  • 5Li, Y.; Zhang, T.; Wang, F, H. Electrochim. Acta, 2006, 51:2845
  • 6Ambat, R.; Aung, N. N.; Zhou, W. Corros. Sci., 2000, 42:1433
  • 7Anik, M.; Celikten, G. Corros. Sci., 2007, 49:1878
  • 8Jonsson, M.; Persson, D.; Leygraf, C. Corros. Sci., 2008, 50:1406
  • 9Jonsson, M.; Persson, D.; Thierry, D. Corros. Sci., 2007, 49:1540
  • 10Winzer, N.; Atrens, A.; Dietzel, W.; Raja, V. S.; Song, G.; Kainer, K. U. Mater Sci. Eng. A, 2008, 488(1-2): 339

二级参考文献6

  • 1张昭,中国有色金属学报,2001年,11卷,2期,1页
  • 2Mansfeld F,J Electrochem Soc,1993年,140卷,2205页
  • 3史志明,中国腐蚀与防护学报,1992年,13卷,156页
  • 4曹楚南,中国腐蚀与防护学报,1989年,9卷,21页
  • 5林海潮,中国腐蚀与防护学报,1986年,6卷,141页
  • 6张昭,张鉴清,王建明,曹楚南.硫酸钠溶液中2024-T3铝合金孔蚀过程的电化学噪声特征[J].中国有色金属学报,2001,11(2):284-287. 被引量:14

共引文献8

同被引文献64

引证文献6

二级引证文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部