摘要
支持向量机(SVM)较好地解决了小样本分类问题,但仍然受稀疏数据和噪音的影响.鉴于人类具有很好的处理稀疏数据和噪音问题的能力,文中提出了模型化这些认知能力的几何化方法,特别是采用相对变换方法建立了认知相对性规律的几何化模型,并用之改进了SVM.仿真实验结果表明,改进的SVM明显提高了抵抗稀疏数据和噪音的能力.
Although a support vector machine (SVM) has excellent classification ability for small data sets, it is still inefficient for noisy or sparse data sets. As humans can effectively deal with noisy and sparse data, a geometric approach of modeling human's cognitive abilities is proposed in this paper. Moreover, a geometric model of the relative cognitive law is established via relative transformation and is then used to improve SVM. It is indicated from the simulation that the classification capability of the improved SVM for noisy and sparse data sets significantly increases.
出处
《华南理工大学学报(自然科学版)》
EI
CAS
CSCD
北大核心
2008年第9期1-5,共5页
Journal of South China University of Technology(Natural Science Edition)
基金
广东省科技攻关项目(2007B030803006)
湖北省科技攻关项目(2005AA101C17)
关键词
支持向量机
认知规律
相对变换
认知几何
support vector machine
cognitive law
relative transformation
cognitive geometry