期刊文献+

基于认知几何的支持向量机分类 被引量:3

Support Vector Machine for Classification Based on Cognitive Geometry
下载PDF
导出
摘要 支持向量机(SVM)较好地解决了小样本分类问题,但仍然受稀疏数据和噪音的影响.鉴于人类具有很好的处理稀疏数据和噪音问题的能力,文中提出了模型化这些认知能力的几何化方法,特别是采用相对变换方法建立了认知相对性规律的几何化模型,并用之改进了SVM.仿真实验结果表明,改进的SVM明显提高了抵抗稀疏数据和噪音的能力. Although a support vector machine (SVM) has excellent classification ability for small data sets, it is still inefficient for noisy or sparse data sets. As humans can effectively deal with noisy and sparse data, a geometric approach of modeling human's cognitive abilities is proposed in this paper. Moreover, a geometric model of the relative cognitive law is established via relative transformation and is then used to improve SVM. It is indicated from the simulation that the classification capability of the improved SVM for noisy and sparse data sets significantly increases.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第9期1-5,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 广东省科技攻关项目(2007B030803006) 湖北省科技攻关项目(2005AA101C17)
关键词 支持向量机 认知规律 相对变换 认知几何 support vector machine cognitive law relative transformation cognitive geometry
  • 相关文献

参考文献13

  • 1Mao K Z. Feature subset selection for support vector machines through discriminative function pruning analysis [J]. IEEE Transactions on System, Man, and Cybernetics,2004,34 ( 1 ) :60-67.
  • 2Navia-Vazquez D, Gutierrez-Gonzalez E, Parrado-Hernandez E,et al. Distributed support vector machines [ J ]. IEEE Transactions on Neural Networks, 2006, 17 (4) : 1091 - 1 097.
  • 3李红莲,王春花,袁保宗,朱占辉.针对大规模训练集的支持向量机的学习策略[J].计算机学报,2004,27(5):715-719. 被引量:53
  • 4Wen Gui-hua, Jiang Li-jun, Wen Jun. Improved locally linear embedding by cognitive geometry [ C ]//Life System Modeling and Simulation. Berlin/Heidelberg: Springer,2007:317-325.
  • 5Wen Gui-hua. Relative transformation-based neighborhood optimization for isometric embedding [ J/OL]. Neurocomputing [2008-03-05 ]. http: //dx. doi. org/10. 1016/ j. neucom. 2008.02. 009.
  • 6Wen Gui-hua,Jiang Li-jun, Nigel R Shadbolt. Using graph algebra to optimize neighborhood for isometric mapping [ C]//Proc of the 20th International Joint Conference on Artificial Intelligence. Hyderabad: AAAI Press, 2007: 2 398- 2403.
  • 7Roweis S T,Saul L K. Nonlinear dimensionality reduction by locally linear embedding [ J ]. Science, 2000, 290 (5500) :2323-2326.
  • 8Tenenbaum J B, de Silva V, Langford J C. A global geometric framework for nonlinear dimenslonality reduction [J]. Science,2000,290(5500) :2319-2323.
  • 9Seung H Sebastian, Lee Daniel D. The manifold ways of perception [ J ]. Science,2000,290 ( 5 500 ) :2 268- 2 269.
  • 10Balasubramanian M, Schwartz E L. The ISOMAP algorithm and topological stability [ J ]. Science, 2002,295 (5552) :7.

二级参考文献14

  • 1李德毅,刘常昱.论正态云模型的普适性[J].中国工程科学,2004,6(8):28-34. 被引量:896
  • 2王梓坤.论混沌与随机[J].北京师范大学学报(自然科学版),1994,30(2):199-202. 被引量:16
  • 3李德毅,孟海军,史雪梅.隶属云和隶属云发生器[J].计算机研究与发展,1995,32(6):15-20. 被引量:1240
  • 4Hearst M.A., Dumais S.T., Osman E., Platt J., Scholkopf B.. Support vector machines. IEEE Intelligent Systems, 1998, 13(4): 18~28
  • 5Vapnik V.N.. An overview of statistical learning theory. IEEE Transactions on Neural Networks, 1999, 10(5): 988~999
  • 6Vapnik V.N.. Statistical Learning Theory.2nd ed..New York: Springer-Verlag, 1999
  • 7Müller Klaus-Robert, Mika Sebastian, Rtsch Gunnar, Tsuda Koji, Schlkopf Bernhard. An introduction to kernel-based learning algorithms. IEEE Transactions on Neural Networks, 2001, 12(2): 181~201
  • 8Burges C.J.C.. A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery, 1998, 2(2): 121~167
  • 9Ke Hai-Xin,Zhang Xue -Gong.Editing support vector machines. In: Proceedings of the International Joint Conference on Neural Networks, Washington, DC, 2001, 2: 1464~1467
  • 10张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):32-42. 被引量:2272

共引文献451

同被引文献37

  • 1李德毅,刘常昱,杜鹢,韩旭.不确定性人工智能[J].软件学报,2004,15(11):1583-1594. 被引量:401
  • 2CHAPELLE O, SCHOLKOPF B, ZIEN A. Semi-supervised learn- ing [ M]. Cambridge: MIT Press, 2006.
  • 3ZHU X J, GOLDBERG A B. Introduction to semi-supervised learn-ing [ J]. Synthesis Lectures on Artificial Intelligence and Machine Learning, 2009, 3(1): 1-130.
  • 4ZHOU D Y, BOUSQUET O, LAL T, et al. Learning with local and global consistency [ C]//Advances in Neural Information Processing Systems 16. Cambridge: MIT Press, 2004:321 - 328.
  • 5ZHU X J , LAFFERTY J , GHAHRAMANI Z . Semi - supervised learning using Gaussian fields and harmonic functions [ EB/OL]. [2011 -01 -01]. http://pages, cs. wisc. edu/- jerryzhu/pub/zgl. pdf.
  • 6BELKIN M, NIYOGI P, SINDHWANI V. Manifold regularization: a geometric framework for learning from labeled and unlabeled exam- ples [ J]. Journal of Machine Learning Research, 2006, 7 ( 11 ) : 2399 - 2434.
  • 7WANG F, ZHANG C S. Label propagation through linear neighbor- hoods [ J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(1) : 55 - 67.
  • 8WEN GUIHUA, JIANG LIJUN, WEN JUN. Improved locally linear embedding by cognitive geometry [ C]// Life System Modeling and Simulation. Berlin: Springer-Verlag, 2007:317-325.
  • 9WU M, SCHOLKOPF B. Transductive classification via local learn- ing regularization [ EB/OL]. [2011 -01 -01]. http://jmlr, csail. mit. edu/proceedings/papers/v2/wu07a/wu07a, pdf.
  • 10Zhu Xiaojin. Semi-supervised learning literature survey [EB/OL].[2008 -07 - 19 ]. http://www. cs. wise, edu/ - jerryzhu/pub/ssl_survey, pdf.

引证文献3

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部