期刊文献+

基于KCCA的特征融合方法及人耳人脸多模态识别 被引量:3

Feature Fusion Method Based on KCCA and Multi-Modality Recognition Fusing Ear and Face Profile Information
下载PDF
导出
摘要 针对非打扰识别问题,鉴于人耳人脸特殊的生理位置关系,提出一种基于二者信息融合的多模态生物特征识别方法.该方法首先采集侧面视角人脸图像,然后将核方法引入到典型相关分析(CCA)中,提出基于核CCA的特征融合方法,并应用其提取人耳人脸的关联特征进行个体的分类识别.仿真实验结果证明了基于KCCA的特征融合方法的有效性.与人耳或侧面人脸单一模态的识别相比,基于人耳人脸的多模态识别的性能显著提高,这为非打扰式生物特征识别提供了一条有效途径. In order to implement the non-intrusive recognition, a multi-modality recognition method of biometric feature is proposed based on the fusion of ear and face profile information. As there is a special physiological location relationship between ear and eye, only the profile-view face images need to be captured for recognition. By introducing the kernel trick to the canonical correlation analysis (CCA) , a feature fusion method based on kernel CCA (KCCA) is established and is then used to capture the associated feature of ear and eye for classification and recognition. Simulated results indicate that the proposed feature fusion method based on KCCA is effective, and that the multi-modality recognition based on ear and face biometrics is of higher performance than the unimodal bio- metric recognition based on ear or face profile. Thus, there comes an effective approach to the non-intrusive biometric recognition.
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2008年第9期117-121,共5页 Journal of South China University of Technology(Natural Science Edition)
基金 国家自然科学基金资助项目(60573058) 北京市教委重点学科共建项目(XK100080537)
关键词 人耳识别 多模态识别 特征融合 典型相关分析 核方法 关联特征 ear recognition multi-modality recognition feature fusion canonical correlation analysis kernel trick associated feature
  • 相关文献

参考文献13

  • 1Arun Ross, Anil Jain. Muhimodal biometrics: an overview [C]//Proc of the 12th European Signal Processing Conference. Vienna : EUSIPCO ,2004 : 1221-1224.
  • 2Burge M, Burger W. Ear biometrics in computer vision [ C]//Proc of the 15th International Conference on Pattern Recognition. Barcelona : IEEE ,2000:822-826.
  • 3Hurley J D, Nixon S M, Carter N J. Force field energy functions for image feature extraction [ J]. Image and Vision Computing, 2002,20 : 311 - 317.
  • 4Yuan Li, Mu Zhi-chun, Zhang Yu, et al. Ear recognition using improved non-negative matrix factorization [ C ] // Proc of the 18th International Conference on Pattern Recognition. Hong Kong: IEEE ,2006.
  • 5Iannarelli A. Ear identification:forensic identification series [ M ]. Fremont: Paramount Publishing Company, 1989.
  • 6Faundez Zanuy. Data fusion in biometrics [J]. Aerospace and Electronic Systems Magazine,2005,20( 1 ) :34-38.
  • 7Liu Chengjun, Wechsler Harry. Face recognition using shape and texture [ C ]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins : IEEE, 1999:23-25.
  • 8Yang Jian, Yang Jing-yu, Zhang David, et al. Feature fusion : parallel strategy vs serial strategy [ J ]. Pattern Recognition ,2003,20 : 1961-1971.
  • 9孙权森,曾生根,杨茂龙,王平安,夏德深.基于典型相关分析的组合特征抽取及脸像鉴别[J].计算机研究与发展,2005,42(4):614-621. 被引量:29
  • 10Shawe-Taylor J, Cristianini N. Kernel methods for pattern analysis [ M ]. Cambridge: Cambridge University Press, 2004.

二级参考文献9

  • 1Y. S. Huang, C. Y. Suen. A method of combining multiple experts for the recognition of unconstrained handwritten numerals.IEEE Trans. PAMI, 1995, 7(1): 90~94.
  • 2A.S. Constantinidis, M. C. Fairhurst, A. F. R. Rahman. A new multi-expert decision combination algorithm and its application to the detection of circumscribed masses in digital mammograms.Pattern Recognition, 2001, 34(8): 1528~ 1537.
  • 3C.J. Liu, H. Wechsler. A shape-and-texture-based enhanced Fisher classifier for face recognition. IEEE Trans. Image Processing, 2001, 10(4): 598~608.
  • 4Yang Jian, Yang Jingyu. Generalized K-L transform based combined feature extraction. Pattern Recognition, 2002, 35 (1):295~297.
  • 5H. Hotelling. Relations between two sets of variates. Biometrika,1936, 28:321~377.
  • 6Z. Jin, J. Y. Yang, Z. S. Hu. Face recognition based on uncorrelated discriminant transformation. Pattern Recognition,2001, 34(7): 1405~1416.
  • 7Z. Q. Hong. Algebraic feature extraction of image for recognition. Pattern Recognition, 1991, 24(3): 211~219.
  • 8M. Turk, A. Pentland. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991, 3(1): 71~86.
  • 9荆晓远,杨静宇.基于相关性和有效互补性分析的多分类器组合方法[J].自动化学报,2000,26(6):741-747. 被引量:12

共引文献28

同被引文献18

  • 1孙权森,曾生根,杨茂龙,王平安,夏德深.基于典型相关分析的组合特征抽取及脸像鉴别[J].计算机研究与发展,2005,42(4):614-621. 被引量:29
  • 2贺云辉,赵力,邹采荣.一种基于KCCA的小样本脸像鉴别方法[J].应用科学学报,2006,24(2):140-144. 被引量:8
  • 3Mehrabian A.Silent messages[OL].[2010-07-07].http://en.wikipedia.org/wiki/Albert_Mehrabian.
  • 4Busso C,Narayanan S S.Interrelation between speech and facial gestures in emotional utterances:a single subject study[J].IEEE Transactions on Audio,Speech,and Language Processing,2007,15(8):2331-2347.
  • 5Busso C,Deng Z G,Neumann U,et al.Natural head motion synthesis driven by acoustic prosodic features[J].Computer Animation and Virtual Worlds,2005,16(3/4):283-290.
  • 6Deng Z G,Neumann U,Lewis J P,et al.Expressive facial animation synthesis by learning speech co-articulation and expression spaces[J].IEEE Transactions on Visualization and Computer Graphics,2006,12(6):1523-1534.
  • 7Chuang E S,Deshpande H,Bregler C.Facial expression space learning[C] //Proceedings of the 10th Pacific Conference on Computer Graphics and Applications.Los Alamitos:IEEE Computer Society Press,2002:68-76.
  • 8Cao Y,Faloutsos P,Pighin F.Unsupervised learning for speech motion editing[C] //Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation.Aire-la-Ville:Eurographics Association Press,2003:225-231.
  • 9Brand M.Voice puppetry[C] //Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques.New York:ACM Press,1999:21-28.
  • 10Hotelling H.Relations between two sets of variates[J].Biometrika,1936,28(3/4):321-377.

引证文献3

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部