期刊文献+

Impact of 〈100〉Channel Direction for High Mobility p-MOSFETs on Biaxial Strained Silicon

〈100〉沟道方向对高迁移率双轴应变硅p-MOSFET的作用(英文)
原文传递
导出
摘要 Biaxial strain technology is a promising way to improve the mobility of both electrons and holes, while (100) channel direction appears as to be an effective booster of hole mobility in particular. In this work, the impact of biaxial strain together with (100) channel orientation on hole mobility is explored. The biaxial strain was incorporated by the growth of a relaxed SiGe buffer layer,serving as the template for depositing a Si layer in a state of biaxial tensile strain. The channel orientation was implemented with a 45^o rotated design in the device layout,which changed the channel direction from (110) to (100) on Si (001) surface. The maximum hole mobility is enhanced by 30% due to the change of channel direction from (110) to (100) on the same strained Si (s-Si) p-MOSFETs,in addition to the mobility enhancement of 130% when comparing s-Si pMOS to bulk Si pMOS both along (110) channels. Discussion and analysis are presented about the origin of the mobility enhancement by channel orientation along with biaxial strain in this work. 双轴应变技术被证实是一种能同时提高电子和空穴迁移率的颇有前景的方法;〈100〉沟道方向能有效地提升空穴迁移率.研究了在双轴应变和〈100〉沟道方向的共同作用下的空穴迁移率.双轴应变通过外延生长弛豫SiGe缓冲层来引入,其中,弛豫SiGe缓冲层作为外延底板,对淀积在其上的硅帽层形成拉伸应力.沟道方向的改变通过在版图上45°旋转器件来实现,这种旋转使得沟道方向在(001)表面硅片上从〈110〉晶向变成了〈100〉晶向.对比同是〈110〉沟道的应变硅pMOS和体硅pMOS,迁移率增益达到了130%;此外,在相同的应变硅pMOS中,沟道方向从〈110〉到〈100〉的改变使空穴迁移率最大值提升了30%.讨论和分析了这种双轴应变和沟道方向改变的共同作用下迁移率增强的机理.
出处 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第10期1893-1897,共5页 半导体学报(英文版)
基金 国家自然科学基金(批准号:60476017,60636010) 清华信息科学与国家技术实验室资助项目~~
关键词 P-MOSFET strained Si channel direction hole mobility enhancement p-MOSFET 应变硅 沟道方向 空穴迁移率增强
  • 相关文献

参考文献13

  • 1Thompson S E,Chau R S,Ghani T,et al. In search of "forever," continued transistor scaling one new material at a time. IEEE Trans Semicond Manuf,2005,18(1) :26
  • 2Thompson S E,Armstrong M,Auth C,et al. A 90-nm logic technology featuring strained-silicon. IEEE Trans Electron Devices, 2004,51(11) : 1790
  • 3Rim K, Welser J, Hoyt J L, et al. Enhanced hole mobilities in surface-channel strained-Si p-MOSFETs. IEDM Tech Dig, 1995:517
  • 4Takagi S, Toriumi A, Iwase M,et al. On the universality of ktversion layer mobility in Si MOSFET' s: Part Ⅰ-effects of substrate impurity concentration. IEEE Trans Electron Devices, 1994,41(12) :2357
  • 5Rim K,Koester S, Hargrove M, et al. Strained Si nMOSFETs for high performance CMOS technology. VLSI Tech Dig,2001:59
  • 6Takagi S. Mobility-enhanced MOS device technologies in nano- CMOS era. IEEE DRC, 2007 ~ 5
  • 7Sayama H, Nishida Y, Oda H, et al. Effect of (100) channel direction for high performance SCE immune pMOSFET with less than 0. 15μm gate length. IEDM Tech Dig, 1999:657
  • 8Okada T, Yoshimura H. Rigorous mathematical calculation of p- and n-mobility as functions of mechanical stress, electric field, current direction and substrate indices for scaled CMOS designing. VLSI Tech Dig, 2004 : 116
  • 9Lee M L,Fitzgerald E A,Bulsara M T,et al. Strained Si,SiGe,and Ge channels for high-mobility meta1-oxide-semiconductor fieldeffect transistors. J Appl Phys,2005,97(011101) : 1
  • 10Saito S, Hisamoto D, Kimura Y, et al. Origin of drivability enhancement in scaled pMOSFETs with 45* rotated <100> channels. VLSI Tech Dig,2006:150

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部