期刊文献+

Identification of differential gene expression profiles of radioresistant lung cancer cell line established by fractionated ionizing radiation in vitro 被引量:7

Identification of differential gene expression profiles of radioresistant lung cancer cell line established by fractionated ionizing radiation in vitro
原文传递
导出
摘要 Background Radiotherapy plays a critical role in the management of non-small cell lung cancer (NSCLC). This study was conducted to identify gene expression profiles of acquired radioresistant NSCLC cell line established by fractionated ionizing radiation (FIR) by cDNA microarray. Methods The human lung adenocarcinoma cell line Anip973 was treated with high energy X-ray to receive 60 Gy in 4 Gy fractions. The radiosensitivity of Anip973R and its parental line were measured by clonogenic assay. Gene expression profiles of Anip973R and its parental line were analyzed using cDNA microarray consisting of 21 522 human genes. Identified partly different expressive genes were validated by quantitative reverse transcription-polymerase chain reaction (Q-RT-PCR). Results Fifty-nine upregulated and 43 downregulated genes were identified to radio-resistant Anip973R. Up-regulated genes were associated with DNA damage repair (DDB2), extracellular matrix (LOX), cell adhesion (CDH2), and apoptosis (CRYAB). Down-regulated genes were associated with angiogenesis (GBP-1), immune response (CD83), and calcium signaling pathway (TNNC1). Subsequent validation of selected eleven genes (CD24, DDB2, IGFBP3, LOX, CDH2, CRYAB, PROCR, ANXA1 DCN, GBP-1 and CD83) by Q-RT-PCR was consistent with microarray analysis. Conclusions Fractionated ionizing radiation can lead to the development of radiation resistance. Altered gene profiles of radioresistant cell line may provide new insights into mechanisms underlying clinical radioresistance for NSCLC. Background Radiotherapy plays a critical role in the management of non-small cell lung cancer (NSCLC). This study was conducted to identify gene expression profiles of acquired radioresistant NSCLC cell line established by fractionated ionizing radiation (FIR) by cDNA microarray. Methods The human lung adenocarcinoma cell line Anip973 was treated with high energy X-ray to receive 60 Gy in 4 Gy fractions. The radiosensitivity of Anip973R and its parental line were measured by clonogenic assay. Gene expression profiles of Anip973R and its parental line were analyzed using cDNA microarray consisting of 21 522 human genes. Identified partly different expressive genes were validated by quantitative reverse transcription-polymerase chain reaction (Q-RT-PCR). Results Fifty-nine upregulated and 43 downregulated genes were identified to radio-resistant Anip973R. Up-regulated genes were associated with DNA damage repair (DDB2), extracellular matrix (LOX), cell adhesion (CDH2), and apoptosis (CRYAB). Down-regulated genes were associated with angiogenesis (GBP-1), immune response (CD83), and calcium signaling pathway (TNNC1). Subsequent validation of selected eleven genes (CD24, DDB2, IGFBP3, LOX, CDH2, CRYAB, PROCR, ANXA1 DCN, GBP-1 and CD83) by Q-RT-PCR was consistent with microarray analysis. Conclusions Fractionated ionizing radiation can lead to the development of radiation resistance. Altered gene profiles of radioresistant cell line may provide new insights into mechanisms underlying clinical radioresistance for NSCLC.
出处 《Chinese Medical Journal》 SCIE CAS CSCD 2008年第18期1830-1837,共8页 中华医学杂志(英文版)
关键词 RADIORESISTANCE cDNA microarray non-small cell lung cancer fractionated ionizing radiation radioresistance cDNA microarray non-small cell lung cancer fractionated ionizing radiation
  • 相关文献

同被引文献24

引证文献7

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部