期刊文献+

采用层层组装技术制备TiO2中空纳米纤维膜催化剂 被引量:2

Fabrication of TiO_2 Hybrid Hollow Nanofibrous Photocatalyst by Electrostatic Layer by Layer Technique
下载PDF
导出
摘要 采用静电纺丝技术和层层组装技术制备了聚电解质/TiO2复合中空纳米纤维。以电纺聚苯乙烯纤维为模板,聚电解质交替吸附在纤维表面,再用有机溶剂溶掉PS纤维模板获得多层聚电解质中空纤维。纤维的平均直径和壁厚能通过模板和吸附层数很好的得到控制。在对比P25 TiO2和TiO2中空纤维对亚甲基蓝的光催化性能实验中,发现TiO2中空纤维具有更好的光催化性能。TiO2/聚电解质复合中空纳米纤维有望应用于光催化,可控药物释放等。 Hybrid muhilayered hollow nanofibers composed by TiO2/ polyelectrolyte (PE) have been prepared by a combination of electrospinning method and Layer-By-Layer (LBL) technology. Polysty rene (PS) was electrospun into nanofibrous mats, which was employed as templates to self-assembly multilayered polyelectrolytes (PE) on the surface. Hybrid muhilayered hollow nanofibers were ob rained after the template PS were selectively removed. The results show that the average diameter of the hollow nanofibers and the wall thickness can be well controlled by the template as well as the numbers of the coating layers. When comparing with other nanostructured TiO2 materials such as commercial TiO2 nanoparticles (P25, Degussa) and TiO2 films, the hollow TiO2/PE hybrid nanofibers exhibited higher photocatatytic activities. Such hollow nanofibers have potential applications in a wide field, for example, catalysts, controlled release medicine and so on.
出处 《材料工程》 EI CAS CSCD 北大核心 2008年第10期145-149,153,共6页 Journal of Materials Engineering
基金 国家自然科学基金(50773010,60121101) 江苏省科学技术厅基金(BK2006509) 大连水产学院引进人才博士启动基金(015627)
关键词 层层组装 TIO2 聚电解质 中空纤维 光催化 layer by layer TiO2 polyelectrolyte hollow fiber photocatalytic
  • 相关文献

参考文献17

  • 1LIU S M, GAN L M, LIU L H, et al. Synthesis of single-crystalline TiO2 nanotubes [J]. Chem Mater, 2002, 14:1391 -- 1397.
  • 2ZHANG L, YU J C. A sonochemical approach to hierarchical porous titania spheres with enhanced photocatalytic activity [J]. Chem Commun, 2003, 2078:46--51.
  • 3ZHAN S H, CHEN D R, JIAO X L, et al. Long TiO2 hollow fibers with mesoporous walls : sol-gel combined electrospun fabrication and photocatalytie properties [J]. J Phys Chem B 2006, 110: 11199--11204.
  • 4HUANG JIN M, ZHANGY Z, KOTAKI, M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites [J]. Composites Science and Technology, 2003, 63,222-226.
  • 5LI D, WANG Y L, XIA Y N. Electrospinning of polymeric and ceramic nanofibers as uniaxially aligned arrays [J]. NanoLett, 2003, 3: 1167--1171.
  • 6ABIDIAN M R, KIM D H, MARTIN D C. Conducting-polymer nanotubes for controlled drug release[J]. Adv Mater, 2006, 18: 405--409.
  • 7ZHANG Y Z, WANG X, FENG Y, et al. Coaxial eleetrospinning of (fluorescein isothiocyanate-conjugated bovine serum albu- min)-encapsulated poly (ε-caprolactone) nanofibers for sustained release [J]. Biomaeromolecules, 2006, 7:1049-- 1057.
  • 8WANG X Y, KIM Y G, DREW C, et al. Structure of peptides investigated by nanopore analysis [J]. Nano Lett, 2004, 4:1273 --1277.
  • 9LOSCERTALES I G, BARRERO A. MA RQUEZ M. et al. Electrically forced coaxial nanojets for one-step hollow nanofiber design[J]. J AM CHEM SOC, 2001, 126:5376 5377.
  • 10ZHANG Y Z, HUANG Z M, XU X J. et al. Preparation of core shell structured PCL-r-gelatin bi component nanofibcrs by coaxial electrospinning [J]. Chem Mater, 2004, 16: 3406- 3410.

同被引文献44

引证文献2

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部