期刊文献+

硫酸化介孔氧化锆固体超强酸的制备和应用研究 被引量:7

Synthesis and Performance of Sulfated Mesoporous Zorcina Solid Superacid
下载PDF
导出
摘要 首先成功合成了介孔氧化锆母体,采用SAXRD、氮气吸脱附、HRTEM等表征发现,制备的介孔氧化锆其晶胞常数a0为12.14nm,介孔直径为3.7nm,介孔的孔壁厚度大约为8.34nm,比表面积和孔体积分别为163.5m2/g和0.15cm3/g;将这种介孔材料进行硫酸化制得固体超强酸,并考察了焙烧温度对其结构的影响,结果发现:随着焙烧温度的提高,催化剂的介孔结构在600℃前基本稳定,但是更高温度会导致介孔结构的破坏;较低温度焙烧得到的硫酸化氧化锆介孔孔壁上是无定形的,温度升高逐步转变成为四方晶相和单斜晶相;NH3-TPD表征发现400℃焙烧后催化剂具有较为宽泛的氨气脱附峰,酸量较少;500℃焙烧后的催化剂的酸性强、具有最大酸量;600℃焙烧后的催化剂酸强度降低,同时酸量下降;700℃焙烧的催化剂酸强度较弱,酸量也进一步减少;800℃焙烧后催化剂基本上没有表现出酸性。催化剂应用于甲苯甲醛缩合反应中,发现500℃焙烧的催化剂显示出最高的活性,甲醛转化率达到45.7%,更高温度焙烧后转化率明显下降,800℃焙烧催化剂没有表现出任何活性。 As the activity of different acids for the condensation between toluene and formaldehyde depended on the proporation of its strong acid site, mesoporous zirconia supported sulfate acid was synthesized via the self-assembly method and characterized via XRD, N2-adsorption and HRTEM. The thermal stability of the prepared mesoporous zirconia supported sulfate acids were checked at different calcination temperature. It was found that the structure of mesoporous zirconia remained under 600℃, but damaged at higher temperature. NH3-TPD found that the catalyst calcined at 500℃ has the highest acid amount and this catalyst showed the highest activity in the condensation between tolu ene and formaldehyde. The conversion of formaldehyde reached 45.7%.
出处 《材料工程》 EI CAS CSCD 北大核心 2008年第10期223-227,共5页 Journal of Materials Engineering
基金 国家自然科学基金项目(20433030,906100002)
关键词 介孔氧化锆 高热稳定性 固体酸材料 sulfated mesostructure zirconia solid superacid condensation reaction
  • 相关文献

参考文献11

  • 1VAUDRY F, KHODABANDEH S, DAVIS M E. Synthesis of pure alumina mesoporous materials[J]. Chemistry Materials, 1996, 8 : 1451-1464.
  • 2CIESI.A U, DEMUTH D, I.EON R, et al. Surfactanl controlled preparation of mesoslruclured transilion metal oxide compounds [J]. Journalof the Chemical Society, Chemical Communications, 1994, 11:1387-1388.
  • 3CREPALDI E L, SOLER-ILLIA G J DE A A, GROSSO A D, et al. Controlled formation of highly organized mesoporous titania thin films: from mesostructured hybrids to mesoporous nanoanatase TiO2[J]. Journal of American Chemical Society, 2003, 125:9770-9786.
  • 4ANTONELLI D M, YING J Y. Synthesis and characterization of hexagonally packed mesoporous tantalum oxide molecular sieves [J]. Chemistry Materials, 1996, 8: 874--881.
  • 5YADA M, KITAMURA H, ICHINOSE A. et al. Mesoporous magnetic materials based on rare earth oxides[J]. Angewandte Chemie International Edition, 1999, 38: 3506--3510.
  • 6PARVULESCU VI, BONNEMANN H. Preparation andcharacterisation of mesoporous zirconium oxide[J]. Applied Catalysis A: General, 2001, 21,1=273--287.
  • 7SORAPONG P, YOOSHIKAZU S. Preparation and characterization of mesoporous MO2 ( M = Ti, Ce, Zr, and Hf) nanopowders by a modified sol gelmethod[J]. Ceramics, 2005, 31: 959--963.
  • 8KLUG H L, ALEXANDER 1. E. X Ray Diffraction Procedures[M]. New York: Wiley, 1974.
  • 9HUANG Y Y, MCCARTHY T J, SACHTLER W M H. Preparation and catalytic testing of mesoporous sulfated zirconium dioxide with partially tetragonal wall structure[J]. Applied Catalysis A: General, 1996, 148: 135--154.
  • 10YAMAGUCHI T, TANABE K, YAO C K. Preparation and characterization of ZrO2 and SO4^2- promoted ZrO2[J]. Materials Chemistry and Physics, 1986, 16:67-77.

二级参考文献2

  • 1高滋,Appl Catal,1989年,56卷,83页
  • 2Wang G W,Chem Lett,1983年,277卷

共引文献86

同被引文献254

引证文献7

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部