期刊文献+

基于小波包的电泳芯片非接触电导检测仿真研究(英文)

Simulation Research on Contactless Conductivity Detection of Capillary Electrophoresis Microchip Based on Wavelet Packets
下载PDF
导出
摘要 由于毛细管电泳芯片电容耦合非接触微电导检测器具有电极不接触溶液,不存在电极的钝化和玷污,不受电泳分离电压影响等优点,被认为是生化分析领域最具发展潜力的一种技术。根据四电极电容耦合非接触电导检测器检测特点,采用小波消噪方法对信号进行滤波处理;依据芯片检测池内仅背景缓冲液与加入待测物质后所呈现的电导率不同致使信号电压会突变的特性,采用小波奇异性检测确定信号变化发生和恢复时刻,从而实现毛细管电泳芯片系统的微电导检测。仿真结果表明,利用小波分析方法能有效地消除噪声,能有效地检测到微电导的波动,并能精确地确定电导率溶液波动的发生、恢复时刻。 The capacitively coupled contactless conductivity detection (C4D) of capillary electrophoresis microchip has been recognized as a powerful tool for biochemical analyses due to its electrodes solution-contactless, non-passivation and non-tarnishing action. According to the characteristics of the four-electrode capacitively coupled contactless conductivity detector in microchip, the wavelet denoising method of how to filter the noise signals of microchip electrophoresis and the wavelet singularity detection of how to locate occurring and recovering time point of the signal mutation were proposed. The simulation results show that using wavelet analysis method can effectively eliminate noise, effectively detect micro-conductance fluctuations, and accurately determine the occurring and recovering time point of solution conductivity fluctuations.
作者 廖红华 于军
出处 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第19期5291-5296,共6页 Journal of System Simulation
基金 the National Natural Science Foundation of China, Grant (60571009) the Science Research Program of Education Bureau of Hubei Province under Grant (Q20082904).
关键词 小波包 电容耦合非接触电导检测 信号消噪与奇异性检测 芯片毛细管电泳 wavelet packet transformation C^4D denoising and singularity detection microchip capillary electrophoresis
  • 相关文献

参考文献9

  • 1Zemann A J, Schnell E, Volgger D, et al. Contactless Conductivity Detection for Capillary Electrophoresis [J]. Anal. Chem. (S0003-2700), 1998, 70(3): 563-567.
  • 2Fracassi Da Silva J A, Do Lago C F. An Oscillometric Detector for Capillary Electrophoresis [J]. Anal. Chem (S0003-2700), 1998, 70(20): 4339-4343.
  • 3Lichtenberg J, de Rooij N F, Verpoorte E. A Microehip Electrophoresis System with Integrated in-plane Electrodes for Contactless Conductivity Detection [J]. Electrophoresis (S0173- 0835), 2002, 23(21): 3769-3780.
  • 4Chen Y, Yang P, Chen C4 et al. Electrophoresis Microchips with Sharp Inlet Tips, for Contactless Conductivity Detection, Fabricated by in-situ Surface Polymerization [J]. Anal. Bioanal. Chem. (S1618- 2642), 2006, 384(3): 683-691.
  • 5Kappes T, Hauser P C. Electrochemical Detection Methods in Capillary Electrophoresis and Applications to Inorganic Species [J]. Journal of Chromatography A (S0021-9673), 1999, 834(1): 89-101.
  • 6Pumera M, Wang J, Opekar F, et al. Contactless Conductivity Detector for Microchip Capillary Electrophoresis [J]. Anal. Chem. (S0003 -2700), 2002, 74(9): 1968-1971.
  • 7Laugere F, Guijt R M, Bastemeijer J, et al. On-Chip Contactless Four-Electrode Conductivity Detection for Capillary Electrophoresis Devices [J]. Anal. Chem (S0003-2700), 2003, 75(2): 306-312.
  • 8Cao W D, Chen X Y. Discrete Wavelets Transform for Signal Denoising in Capillary Electrophoresis with Electroche milum inescence Detection [J]. Electrophoresis (S0173-0835), 2003, 24(18): 3124-3130.
  • 9Yan W P, Xu C C, Li J H, et al. The Use of Discrete Wavelets for Signal Denoising in Microchip Capillary Electrophoresis [C]// Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China: IEEE Press, 2006: 5254-5258.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部