摘要
研究了非线性系统两类广义混沌同步的存在性.即在响应系统的修正方程在具有渐近稳定平衡点或渐近稳定周期轨道的情况下,满足一定的条件,可将广义同步化流形存在性问题转化为Lipschitz函数族的压缩不动点问题,理论上严格证明了该广义同步化流形的指数吸引性.数值仿真证实了理论的正确性及有效性.
The existence of two types of generalized synchronization of chaotic nonlinear systems is studied. When the modified system collapses to a stable equilibrium or periodic oscillation, the existence of generalized synchronization can be converted to the problem of compression fixed point under certain conditions. Strict theoretical proofs are given to the exponential attractive property of generalized synchronization manifold. Numerical simulations illustrate the correctness of the present theory.
出处
《物理学报》
SCIE
EI
CAS
CSCD
北大核心
2008年第10期6086-6092,共7页
Acta Physica Sinica
基金
国家自然科学基金(批准号:60575038)资助的课题.~~
关键词
广义同步化流形
压缩不动点
指数吸引性
generalized synchronization manifold, compression fixed point, exponential attractive property