期刊文献+

一种分析楔形光纤的等效矩形近似-阶梯串联法

Equivalent rectangle approximation-staircase concatenation method for wedge shaped fiber
原文传递
导出
摘要 楔形光纤(WSF)是实现平面光波光路芯片入出端口与光纤高效连接的核心部件.采用数值模拟方法分析其中光波传输演化过程,是优化设计光子器件耦合结构的重要基础.提出基于等效矩形近似的三维阶梯串联法(ERA-SCM),将楔端沿传输方向细分,引入矩形波导近似,给出了细分后各段近似矩形波导的等效折射率;在此基础上,建立了阶梯串联法分析模型,分级给出WSF中光波传输过程与模场演变.数值分析结果表明,ERA-SCM比有限差分束传播法(FD-BPM)能够更精确地分析非对称光纤和波导结构,描述其中光模场的演化.WSF出射光场实测结果表明,ERA-SCM数值模拟结果与实验结果的误差为1.9%,而FD-BPM的误差为4.5%.ERA-SCM是分析非对称光波导光波传输与模场演变的有效方法. Wedge shaped fiber (WSF) is the key component to acquire high coupling efficiency between input/output ports of planar lightwave circuit chips and fiber arrays. It is very important to analyze the mode spot and the mode field evolution of the lightwave propagating in WSF using numerical simulation tools. A three-dimensional equivalent rectangle approximation-staircase concatenation method (ERA-SCM) is proposed to fractionize the wedged tip of WSF along the propagating direction and introduce rectangular waveguide approximation so that effective index of the segmentations is obtained and SCM analysis model is established. Lightwave propagation and mode field evolution is analyzed by ERA-SCM and compared with finite difference-beam propagation method (FD-BPM), showing that the former is more precise to solve mode field evolution for asymmetric fiber and waveguide structures. The measurement of the output optical spot verifies the ERA-SCM simulation error is within 1.9%, while that for FD-BPM method is 4.5%. Thus, ERA-SCM is an effective method for analyzing asymmetric fiber and waveguide structures.
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2008年第10期6430-6436,共7页 Acta Physica Sinica
基金 高等学校博士学科点专项科研基金(批准号:20060286042) 江苏省高技术项目(批准号:BG2007042) 江苏省自然科学基金(批准号:BK2007102)资助的课题~~
关键词 平面光波光路 楔形光纤 等效矩形近似 阶梯串联法 planar lightwave circuit, wedge shaped fiber, equivalent rectangle approximation, staircase concatenation method
  • 相关文献

参考文献12

  • 1Modavis R A, Webb T W 1995 Photon. Tech. Lett. 7 798
  • 2Yeh S M, Huang S Y, Cheng W H 2005 J. Lightwave Tech. 23 1781
  • 3Mizuno T, Kitoh T, Itoh M, Saida T, Shibata T, Hibino Y 2004 J. Lightwave Tech. 22 833
  • 4Scarmozzino R, Gopinath A, Pregla R, Helfert S 2000 J. Sel. Topics in Quantum Electron. 6 150
  • 5Kawano K, Kitoh T 2001 Introduction to Optical Waveguide Analysis (New York: John Wiley & Sons) p165
  • 6肖金标,马长峰,张明德,孙小菡.InGaAs/InAlAs多量子阱脊形波导及定向耦合器光波特性准矢量分析[J].物理学报,2006,55(1):254-260. 被引量:3
  • 7Xiao J B, Sun X H 2006 Chin. Phys. 15 1824
  • 8Chu S T, Chaudhuri S K 1989 J. Lightwave Tech. 7 2033
  • 9Okamoto K 2000 Fundamentals of Optical Waveguides ( San Diego : Academic Press) p323
  • 10Clark D F, Dunlop 1 1988 Electron. Lett. 24 1414

二级参考文献43

  • 1马宏,易新建,陈四海.1.3μm偏振无关半导体光放大器单片集成模斑变换器[J].光学学报,2004,24(6):756-758. 被引量:3
  • 2刘旭,陈麟,蔡纯,肖金标,张明德,孙小菡.锥形透镜光纤聚焦特性研究[J].光学学报,2006,26(8):1182-1186. 被引量:6
  • 3Loi K K,Shen L,Wieder H H et al 1997 IEEE Photon.Technol.Lett.9 1229
  • 4Scarmozzino R,Gopinath A,Pregla R et al 2000 IEEE J.Select.Topics Quantum Electron.6 150
  • 5Zhang T Y,Cao J C 2004 Chin.Phys.131742
  • 6Feit M D,Fleck J A 1980 Appl.Opt.19 1154
  • 7Yamauchi J,Nakamura S,Nakano H 2000 IEEE Photon.Technol.Lett.12 1001
  • 8Tsuji Y,Koshiba M,Shiraishi T 1997 J.Lightwave Technol.151728
  • 9Xiao J B,Sun X H,Zhang M D 2004 Sci.China Ser.F 47 34
  • 10He Y Z,Shi F G 2003 IEEE Photon.Technol.Lett.15 1381

共引文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部