期刊文献+

一种基于GVF各向异性扩散模型的图像放大算法 被引量:1

An Image Magnification Method with GVF-Based Anisotropic Diffusion Model
下载PDF
导出
摘要 提出了一种基于梯度向量流各向异性扩散模型的图像放大方法.首先低分辨率图像插值放大作为高分辨率图像的初始估计,然后利用基于GVF的平均曲率扩散模型和高斯移动平均低分辨率模型约束进行迭代复原.GVF是一种有旋场,作为外力场用来描述图像的边缘特征,能够将初始图像中斜向边缘锯齿效应表示为流线型.采用GVF外力场约束平均曲率扩散过程,能够有效去除边缘锯齿现象并保持纹理结构.高斯移动平均模型提供了图像数据保真度约束,使结果更接近理想图像.实验结果表明,本文算法能够有效提高放大图像的主观视觉质量和客观PSNR. An image magnification method with GVF-based anisotropic diffusion model is proposed.An image is magnified by bilinear interpolation at first. Then, an iterative restoration with a GVF based mean curvature flow diffusion and a Gaussian moving average LR constraint is applied to the magnified image. Since GVF is a rotational field, as an external force field to descript the edges of an image, the vector flow will become streamline near the jagged edges. Therefore, the GVF based anisotropic diffusion will be helpful to remove the jagged effects as well as keep the texture structures. Meanwhile, the Gaussian moving average LR model provides a data fidelity constraint which makes the results more close to the ideal FIR images. Experiments results show that the proposed method can improve the quality of magnified image in terms of both the objective and subjective.
出处 《电子学报》 EI CAS CSCD 北大核心 2008年第9期1755-1758,共4页 Acta Electronica Sinica
基金 国家自然科学基金(No.60472036 60431020 60402036) 教育部博士点基金(No.20040005015)
关键词 图像放大 梯度向量流 各向异性扩散 超分辨率复原 image magnification gradient-vector flow anisotropic diffusion super resolution
  • 相关文献

参考文献10

  • 1S C Park,M K Park,M G Kang. Super-resolution image reconstruction: a technical review[J]. IEEE Signal Processing Magazine, 2003, (5) :21 - 36.
  • 2N Toronto,D Venture, B S Morse.Edge inference for image interpolation[A]. Proceedings of International Joint Conference on Neural Networks [C]. Montreal, Canada: IJCNN, 2005. 1782 - 1787.
  • 3H A Aly, E Dubois. Image up-sampling using total-variation regularization with a new observation model[J] .IEEE Trans. on Image Processing,2005,14(10) : 1647 - 1659.
  • 4X L Zhang, K M Lam,L S Shen. Image magnification based on adaptive MRF model parameter estimation [A]. Proc of 2005 International Symposium on Intelligent Signal Processing and Communication Systems[C]. HongKong: IEEE Press, 2005.
  • 5H A Aly. Regularized Image Up-Sampling[D]. CA: Ottawa- Carleton Institute tbr Electrical & Computer Engineering, School of Information Technology & Engineering (SITE), University of Ottawa, Mae,2004.
  • 6R R Schultz,R L Stevenson.A bayesian approach to image expansion for imp roved definition[ J]. IEEE Trans Image Processing, 1994,3(3) :233 - 242.
  • 7C Xu,J L Prince, Snakes, shapes and gradient vector flow[J]. IEEE Trans on Image Processing, 1998,7(3) :359 - 369.
  • 8H Yu, C S Chua. GVF-based anisotropic diffusion model[J]. IEEE Trans on Image Processing, 2006,15(6) : 1517 - 1524.
  • 9P Perona, J Malik. Scale-space and edge detection using anisotropic diffusion[ J]. IEEE Trans Pattern Anal Machine Intell, 1990,12(7) :629 - 639.
  • 10张晓玲,沈兰荪,Lam Kin-Man.一种基于分形码和模型约束的图像放大算法[J].电子学报,2006,34(3):433-436. 被引量:11

二级参考文献12

  • 1W K Pratt.Digital Image Processing[M].New York,USA:John Wiley & sons,INC,2001.393-297.
  • 2M Unser.Splines:a perfect fit for signal and image processing[J].IEEE Signal Processing Magazine,1999,16 (6):22 -38.
  • 3R R Schultz,R L Stevenson.A bayesian approach to image expansion for improved definition[J].IEEE Trans Image Processing,1994,3 (3):233-242.
  • 4W K Carey,D B Chuang,S S Hemami.Regularity preserving image Interpolation[J].IEEE Trans Image Processing,1999,8 (9):1293-1297.
  • 5S Chaudhuri.Super-resolution imaging[M].Boston:Kluwer Academic Publishers,2001.21 -44.
  • 6Barsley.Fractals everywhere[M].New York:Academic Press,1988.
  • 7Y Fisher.Fractal image compression:theory and application[M].Berlin,Germany:Springer-Verlag,1995.
  • 8A E Jacquin.Fractal image coding:a review[J].Proc IEEE,1993,81 (10):1451-1465.
  • 9S K Mitra,C A Murthy,M K Kundu.A technique for image magnification using partitioned iterative function system[J].Pattern recognition,2000,33 (7):1119 -1133.
  • 10K H Chung,Y H Fung,Y H Chan.Image enlargement using fractal[J].IEEE International Conference on Coustics,Speech,and Signal Processing,2003,6:6 -10.

共引文献10

同被引文献29

  • 1程建刚,田捷,何余良,杨鑫.基于非线性扩散滤波的指纹增强算法[J].自动化学报,2004,30(6):854-862. 被引量:17
  • 2Jasiūniené E, ?ukauskas E. The ultrasonic wave interaction with porosity defects in welded rail head. ULTRAGARSAS (ULTRASOUND), 2010, 65(1): 12-18.
  • 3Vidaud M, Zwanenburg W J. Current situation on rolling contact fatigue--a rail wear phenomenon. In: Proceedings of the 9th Swiss Transport Research Conference. Monte Veritá, Swiss, 2009. 1-27.
  • 4Marino F, Distante A, Mazzeo P L, Stella E. A real-time visual inspection system for railway maintenance: automatic hexagonal-headed bolts. IEEE Transactions on Systems Man, and Cybernetics, Part C: Applications and Reviews, 2007, 37(3): 418-428.
  • 5Mandriota C, Stella E, Nitti M, Ancona N, Distante A. Rail corrugation detection by Gabor filtering. In: Proceedings of IEEE International Conference on Image Processing. Thessaloniki: IEEE, 2001. 626-628.
  • 6Mandriota C, Nitti M, Ancona N, Stella E, Distante A. Filter-based feature selection for rail defect detection. Machine Vision and Applications, 2004, 15(4): 179-185.
  • 7Papaelias M P, Roberts C, Davis C L. A review on non-destructive evaluation of rails: state-of-the-art and future development. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and rapid transit, 2008, 222(4): 367-384.
  • 8Deutschl E, Gasser C, Niel A, Werschonig J. Defect detection on rail surfaces by a vision based system. In: Proceedings of IEEE Intelligent Vehicles Symposium. Parma, Italy: IEEE, 2004. 507-511.
  • 9Shah M. Automated Visual Inspection/Detection of Railroad Track, Technical Report, BD550-08, Computer Vision Lab, University of Central Florida, USA, 2010.
  • 10Li Q Y, Ren S W. A real-time visual inspection system for discrete surface defects of rail heads. IEEE Transactions on Instrumentation and Measurement, 2012, 61(8): 2189-2199.

引证文献1

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部