期刊文献+

两种土壤水分特征曲线间接推求方法对黄土的适应性评价 被引量:10

Evaluation of two indirect methods to estimate soil water characteristic curve of loess soil
下载PDF
导出
摘要 土壤水分特征曲线(SWCC)是模拟土壤水分运动和溶质运移的一个重要参数,利用土壤的基本物理性质来间接推求SWCC的方法已经成为当今土壤物理学领域的研究热点。为了比较两种SWCC间接推求方法——Arya-Paris物理经验方法(简称AP方法)和Tyler-Wheatcraft分形几何方法(简称TW方法)对黄土的适应性,该文分析了黄土高原296组土壤颗粒分布、容重和水分特征曲线等资料,利用简化的Fredlund(Fred3P)模型模拟得到连续的土壤颗粒分布曲线,然后应用AP和TW方法预测出相应吸力下的土壤含水量。研究结果表明,对于黄土性土壤,AP和TW两种方法的预测结果均达到了一定的精度,相比较而言AP方法的预测效果明显优于TW方法,且受质地影响小。 Soil water characteristic curve (SWCC) is one of important parameters for modeling waterflow and solutes transport. The method used for soil basic physical properties to estimate SWCC has been a hot research field in soil science. For evaluating the adaptation of two indirect methods —Arya-Paris(AP)method and Tyler-Wheatcraft(TW) method —to estimate SWCC of loess soil, 296 soil samples with particle-size distribution were analyzed, bulk density and SWCC data on the Loess Plateau. A modified Frelund (Fred3P) model was used to simulate particle-size distribution, and AP and TW methods were used to predict SWCC of 296 soil samples. Results show that AP method has better precision for SWCC than TW method. At the same time, the soil texture has less effect on the prediction of AP model than TW method.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2008年第9期11-15,共5页 Transactions of the Chinese Society of Agricultural Engineering
基金 教育部新世纪优秀人才支持计划 国家自然科学基金(40671083)
关键词 土壤水分特征曲线 土壤颗粒分布 黄土 soil water characteristic curve, soil particle-size distribution, loess soil
  • 相关文献

参考文献17

  • 1陈效民,Bouma,J.应用一次出流法结合SFIT模型对土壤水力性质的研究[J].土壤学报,1994,31(2):214-219. 被引量:37
  • 2Schaap M G, Leij F J. Database-related accuracy and uncertainty ofpedotransfer functions[J]. Soil Science, 1998, 163: 765--779.
  • 3Arya L M, Paris J F. A physicoempirical model to predict the soil moisture characteristic from particle:size distribution and bulk density data[J]. Soil Science Society of America Journal, 1981, 45: 1023--1030.
  • 4Tyler S W, Wheatcraft S W. Application of fractal mathematics to soil water retention estimation. Soil Science SocietyofAmerica Journal, 1989, 53: 987--996.
  • 5Haverkamp R; Parlange J Y. Predicting the water-retention curver from particle-size distribution- I : sandy soils without organic matter. Soil Science of America Journal, 1986, 142: 325--339.
  • 6Wu L, Vomocil J A, Childs S W. Pore size, particle size, aggregate size, and water retention[J]. Soil Sci Soc Am J, 1990, 54: 952--956.
  • 7Smettem K R J, Gregory P J. The relation between soil water retention and particle-size distribution parameters for some predominantly sandy Western Australian soils[J]. Aust J Soil Res, 1996, 34: 695--708.
  • 8Zhuang J, Yan J, et al. Estimating water retention characteristic from soil particle-size distribution using a non-similar media concept[J]. Soil Science, 2001, 166:308 --321.
  • 9Arya L M, Feike J L, Martinus T et al. Scaling parameter to predict the soil water characteristic from particle-size distribution data[J]. Soil Sci Soc Am J, 1999, 63: 510--519.
  • 10Tyler S W, Wheatcraft S W. Fractal processes in soil water retention[J]. Water Resources Research, 1990, 26: 1047-- 1056.

二级参考文献3

共引文献101

同被引文献135

引证文献10

二级引证文献121

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部