期刊文献+

预测性土壤有机质制图中模糊聚类参数的优选 被引量:13

Optimization of clustering parameters in predictive mapping of soil organic matter
下载PDF
导出
摘要 对数字高程模型(DEM)中的地形特征进行模糊c均值聚类,分别采用3种方法来选择最优模糊度和分类数组合及分类结果;在最优分类结果上,用多元线性回归方法建立土壤A层有机质含量与地形景观之间的定量关系,并应用该关系进行土壤制图应用。结果表明:3种方法选择的最优模糊度比较接近,主要为1.5,还包括1.4和1.6,但3种方法选择的最优分类数却有很大差别;尽管依据回归模型r2选择的分类结果较多地解释了土壤A层有机质含量的变异,但基于这种分类结果的制图偏差较大,与实测值相比较的结果也说明基于这种分类结果的制图精度较低;用内部判据选择的分类结果在制图过程中产生的偏差较小,制图精度也较高。 After fuzzy c-means clustering of topographic attributes derived from a digital elevation model (DEM) of the study area, three measures had been used to identify optimal combinations of clustering parameters, i.e. clustering exponent and number of classes, and its corresponding clustering results. Based on the identified optimal clustering results, soil-landscape models were built through multiple linear regressing the relationships between the content of organic matter in soil A layer and clustering memberships. Furthermore, the soil-landscape models were applied into predictive mapping of organic matter in soil A layer over the study area. Results show that, the three measures have different powers in choosing optimal number of clusters while they chose the similar optimal fuzziness exponents, 1.5 and/or near to 1.5, i.e. 1.4 and 1.6. And the predicted maps that were based on the optimal clustering identified by regression r^2, show greater deviations from normal than the other two maps. Moreover, comparisons of values on predicted maps and determined in lab indicated that greater accuracies existed in the predictive maps which were based on the fuzzy clustering identified by internal criterion.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2008年第9期31-37,F0004,共8页 Transactions of the Chinese Society of Agricultural Engineering
基金 国家自然科学基金(40771092) 国家自然科学基金(40401024) 江苏省自然科学基金(BK2006526)
关键词 模糊聚类 分类 制图 模糊C均值聚类 DEM fuzzy clustering, classification, mapping, fuzzy c-means, DEM
  • 相关文献

参考文献21

  • 1Scull P, Franklin J, Chadwick O A, et al. Predictive soil mapping: A review[J]. Progress in Physical Geography, 2003, 27: 171--197.
  • 2Hudson B D. Concepts of soil mapping and interpretation[J]. Soil Survey Horizons , 1990, 31: 63--73.
  • 3Zhu A X, Band L, Vertessy R, et al. Derivation of soil properties using a soil land inference model (SoLIM)[J]. Soil Science Society of American Journal, 1997, 61:523--533.
  • 4Bruin S D, Stein A. Soil-landscape modelling using fuzzy c-means clustering of attribute data derived from a Digital Elevation Model(DEM)[J].Geoderma, 1998, 83:17--33.
  • 5Smith M P, Zhu A X, Burt J E, et al. The effects of DEM resolution and neighborhood size on digital soil survey[J]. Geoderma, 2006, 137: 58--69.
  • 6McBratney A B, Mendonca Santos M L, Minasny B. On Digital Soil Mapping[J]. Geoderma, 2003, 117: 3--52.
  • 7McBramey A B, Odeh I O W. Application of fuzzy sets in soil science: fuzzy logic, fuzzy measurements and fuzzy decisions[J].Geoderma, 1997, 77: 85--113.
  • 8De Gruijter J J, McBramey A B. A modified fuzzy k-means method for predictive classification[M]. In: Beck H H. ed. Classification and Related Methods of Data Analysis. Amsterdam: Elsevier, 1988: 97--104.
  • 9Odeh I O, McBratney A B, Chittleborough D J. Soil pattern recognition with fuzzy-c-means: Application to classification and soil-landform interrelationships[J]. Soil Science SocietyofAmericanJournal, 1992, 56.. 505--516.
  • 10McBratney A B, De Gruijter J J, Brus D J. Spatial prediction and mapping of continuous soil classes[J]. Georderma, 1992, 54:39--64.

二级参考文献24

共引文献97

同被引文献291

引证文献13

二级引证文献147

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部