期刊文献+

数字图像和逐步回归客观评定冷却猪肉肉色 被引量:8

Objective evaluation of chilled pork color by digital image and stepwise regression
下载PDF
导出
摘要 为开发准确、快速的猪肉肉色质量客观评定方法,研究了数字图像处理和和逐步回归模型对冷却猪肉肉色客观评定分级的效果。对宰后冷却24h的猪胴体,切开第3~4肋骨间背最长肌,发色60min,数码相机获取数字图像处理后提取断面肉色参数(L*、a*、b*、Chroma、Hueangle)。提取的80头猪胴体背最长肌肉色参数经逐步回归建立了肉色评定模型。结果表明,数字图像处理后提取肉色参数建立的逐步回归模型评定冷却猪肉肉色分值的效果优于BP人工神经网络模型;若以∣评定肉色分值-感官肉色分值∣≤0.3为评定正确判断标准,前者评定正确率为78.8%,后者为60.4%;前者与本试验评定正确率最高的单个感官评定人员相比(78.2%),差异不显著(P>0.05)。因此,数字图像处理可有效地对冷却猪肉肉色进行客观评定。 To develop accurate and rapid method for objective evaluation, the effect of digital image processing and stepwise regression on chilled pork color evaluation were studied. Pork carcass longissimus dorsi muscles were cut at 3~4th rib and bloomed for 60min. Digital images of the muscle surface were captured by digital camera and processed to extract image color features(L^*, a^*, b^*, Chroma, Hue angle). Extracted color features from 80 carcass longissimus dorsi muscles were used to establish color score evaluation model by stepwise regression . The results showed the color score evaluation model by stepwise regression based on color features from digital image processing was better than that by BP artificial neural network and the evaluation accuracy was 78.8% and 60.4%, respectively if judged by the formula∣evaluation color score-sensory color score∣≤0.3. The former had no significant variation with evaluation accuracy(78.2%) compared with the best single panelist (P〉0.05). Therefore, digital image processing is an effective tool for objective evaluation of chilled pork color.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2008年第9期170-174,共5页 Transactions of the Chinese Society of Agricultural Engineering
基金 “十一五”国家科技支撑计划重大项目(2006BAB05A03) 国家科技支撑项目科研专项经费调理肉制品综合保鲜技术研究(2007BAD70B01)资助
关键词 色泽 数字图像存储 冷却猪肉 客观评定 逐步回归 color, digital image storage, chilled pork, objective evaluation, stepwise regression
  • 相关文献

参考文献17

  • 1Barton-Gade P A. The effect of breed on meat quality characteristics in pigs[A]. Proceedings 34^th ICoMST[C]. Brisbane, 1988: 568--570.
  • 2孙京新,汤晓艳,周光宏,徐幸莲.宰后冷却工艺对冷却猪肉肉色、质量分类的影响[J].农业工程学报,2006,22(8):203-208. 被引量:32
  • 3Faustman C, Cassens R G; The biochemical basis for discoloration in fresh meat: a review[J]. J Mus Foods, 1990, 1: 217--243.
  • 4Judge M D. Principles of meat science.(2nd)[M]. Dubuque, IA: Kendall Hunt Publishing Company, 1989.
  • 5Delay W D, Thompson J C. Color machine vision for meat inspection[A]. Proc ASAE Conf Food Processing Automation Ⅱ Conf[C]. St Joseph: MI, 1992. 230--237.
  • 6Lu J, Tan J, Shatadal P, et al. Evaluation of pork color by using computer vision[J]. Meat Science, 2000, 56: 57--60.
  • 7Tan J L. Meat quality evaluation by computer vision[J]. Journal ofFoodEngineering, 2004, 61(1): 27--35.
  • 8AMSA. Guidelines for meat color evaluation[A]. Proceedings 44th Annual Reciprocal meat conference[C]. KansasUSA, 1991. 1--17.
  • 9Tan F J, Morgan M T, Ludas L I, et al. Assessment of fresh pork color with color machine vision[J]. Journal of Animal Science, 2000, 78, 3078--3085.
  • 10Zheng C X, Sun D W, Zheng L Y. Correlating colour to moisture content of large cooked beef joints by computer vision[J]. Journal of Food Engineering, 2006, 77(4): 858 --863.

二级参考文献52

共引文献146

同被引文献81

引证文献8

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部