期刊文献+

应用微重力旋转培养系统构建组织工程软骨的实验研究 被引量:3

Experimental cartilage engineering with microgravity rotating cell culture system
下载PDF
导出
摘要 目的探讨微重力旋转培养系统(RCCS)在构建组织工程细胞/载体复合物修复兔关节软骨缺损中的作用。方法将兔骨髓间充质干细胞附着在三维载体壳聚糖上,分为传统的静置培养组和微重力旋转培养组,经过体外成软骨诱导作用后,修复兔关节软骨缺损。考察不同时间点、不同培养体系中细胞增殖情况、成软骨表达情况以及对兔关节软骨缺损的修复情况。结果相对于常规的静置培养组,RCCS组细胞增殖能力、成软骨表达均得到增强,对兔关节软骨缺损的修复更为有效。结论微重力旋转培养系统可以作为构建组织工程软骨一个有效的辅助手段,进而应用临床软骨缺损的修复。 Objective To explore the role of mierogravity rotating cell culture system (RCCS) in the cartilage tissue-engineering for repair of cartilage defects. Methods Rabbit marrow derived mesenchymal stem cell (MSCs) attached to chitosan (as the three dimensional vector) were divided into two groups, one cultured in the mierogravity rotating culture system and the other cultured in tranditional static culture system, both exposed to chondrogenic conditions. After two weeks induction, the cell-vector complexes were transplanted to repair the cartilage defects created in rabbit femur as allografts. The proliferation, chondrogenesis of MSCs and outcomes of cartilage repair were compared between the two groups. Results Compared with those in static culture system, proliferation and chondrogenesis of MSCs in RCCS were more intense, and the outcomes of repair with RCCS-derived cartilage appeared more reliable. Conclusion The RCCS can be used as an effective tool for cartilage tissure-enigeering.
出处 《中国药物与临床》 CAS 2008年第10期766-769,共4页 Chinese Remedies & Clinics
基金 国家自然科学基金资助项目(30271307)
关键词 失重模拟 组织工程 间质干细胞 软骨 Weightlessness simulation Tissue engineering Mesenchymal stem cells Cartilage
  • 相关文献

参考文献16

  • 1Dexter TM, Allen TD, Lajtha LG. Conditions controlling the proliferation of hematopoietic stem cells in vitro. J Cell Physiol, 1977,91(3): 335-344.
  • 2Vacanti CA, Langer R, Schloo B,et al. Synthetic polymers seeded with chondrocytes provide a template for new cartilage formation. Plastic Reconstr Surg, 1991, 88: 753-755.
  • 3Castro-Malaspina H, Gay RE, Resnick G, et al. Characterization of human bone marrow fibroblast colony-forming cells (CFU-F) and their progeny. Blood, 1980, 56(2): 289-301.
  • 4Sanchez-Ramos J, Song S, Cardozo-Pelaez F, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol, 2000,164(2): 247-256.
  • 5Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol, 1999, 181(1): 67-73.
  • 6Langer R, Vacanti JP. Tissue engnieering status and challenges (review). Science, 260: 920-926.
  • 7Kim SS, Utsunomiya H, Koski JA, et al. Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann Surg, 1998, 228(1): 8-13.
  • 8Granet C, Laroche N, Vico L, et al. Rotating-well vessels, promising bioreactors for osteoblastic cell cuhure:comprison with other 3D conditons. Med Biol Eng Comput, 1998, 36(4): 513- 519.
  • 9Ishaug SL, Crane GM, Miller MJ, et al. Bone formation by three- dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res, 1997, 36: 17-28.
  • 10Holy CE, Syhoichet MS, Davis JE. Engineering three-dimensional bone tissure in vitro using biodegradable scaffolds:investigating initial cell-seeding density and culture period. J Bioned Mater Res, 2000, 51: 376-382.

同被引文献36

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部