期刊文献+

基于遗传算法的K均值聚类分析 被引量:71

K-Means Clustering Analysis Based on Genetic Algorithm
下载PDF
导出
摘要 传统K均值算法对初始聚类中心敏感,聚类结果随不同的初始输入而波动,容易陷入局部最优值。针对上述问题,该文提出一种基于遗传算法的K均值聚类算法,将K均值算法的局部寻优能力与遗传算法的全局寻优能力相结合,在自适应交叉概率和变异概率的遗传算法中引入K均值操作,以克服传统K均值算法的局部性和对初始中心的敏感性,实验证明,该算法有较好的全局收敛性,聚类效果更好。 Traditional K-Means algorithm is sensitive to the initial centers and easy to get stuck at locally optimal value. To solve such problems, this paper presents an improved K-Means algorithm based on genetic algorithm. It combines the locally searching capability of the K-Means with the global optimization capability of genetic algorithm, and introduces the K-Means operation into the genetic algorithm of adaptive crossover probability and adaptive mutation probability, which overcomes the sensitivity to the initial start centers and locality of K-Means. Experimental results demonstrate that the algorithm has greater global searching capability and can get better clustering.
出处 《计算机工程》 CAS CSCD 北大核心 2008年第20期200-202,共3页 Computer Engineering
关键词 K均值算法 聚类中心 遗传算法 K-Means algorithm clustering center genetic algorithm
  • 相关文献

参考文献4

二级参考文献12

  • 1张晓缋,方浩,戴冠中.遗传算法的编码机制研究[J].信息与控制,1997,26(2):134-139. 被引量:93
  • 2Bessaou M, Slarry P. A Genetic Algorithm with Realvalue Coding to Optimize Multimodal Continuous Functions[J]. Structure Multitask Optimization, 2001,23(1):63-74.
  • 3Blanco A, Delgado M, Pegalajar M C. A Real Coded Genetic Algorithm for Training Recurrent Neural Networks[J]. Neural Networks, 2001,14 (1) :93-105.
  • 4Baskar S, Subberaj P, Rao M V C. Hybrid Real Coded Genetic Algorithm Solution to Economic Dispatch Problem [J]. Computers and Electrical Engineering,2003,29(3):407-419.
  • 5Tsutsui S, Goldberg D E. Search Space Boundary Extension Method in Real Coded Genetic Algorithms[J]. Information Sciences, 2001,133(3) :229-247.
  • 6Goldberg D E. Real Coded Genetic Algorithms, Virtual Alphabets and Blocking[J]. Complex Systems, 1991,5(2):139-167.
  • 7Srinivas M, Patnaik L M. Adaptive Probabilities of Crossover and Mutation in Genetic Algorithms [J].IEEE Trans on Systems, Man and Cybernetics, 1994,24(4) : 656-667.
  • 8Whitley D, Beveridge R, Graves C, et al. Test Driving Three Genetic Algorithms: New Test Functions and Geometric Matching [J].J of Heuristics, 1995, 1(1): 77-104.
  • 9侯格贤,吴成柯.遗传算法的性能分析[J].控制与决策,1999,14(3):257-260. 被引量:30
  • 10王磊,戚飞虎.大矢量空间聚类的遗传k-均值算法[J].上海交通大学学报,1999,33(9):1154-1156. 被引量:6

共引文献93

同被引文献665

引证文献71

二级引证文献503

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部