摘要
图G=(V,E),一个函数f:V(G)→{-1,0,1}称为G的减控制函数当且仅当对任意v∈V有∑u∈N[V]f(u)≥1.令f(V)=∑v∈Vf(v)为f的权.图G的减控制数γ-(G)=min{f(V)|f是一个减控制函数}.建立了几类特殊图的减控制数的值,并对一般图讨论了γ-(G)的界.
Let G = (V, E) be a graph. A function f:V(G)→{-1,0,1} is said to be a minus dominating function if ∑u∈N[V]f (u)≥1for every v∈V. Let f(V) = ∑v∈Vf(v) be the weitht off. The minus domination number of G, denoted by γ^- (G) equal to min {f(V) │f is minus dominating function }. In this paper, some values of minus domination number for several special classes graphs are given and the bound of γ^- (G) for general graph is discussed.
出处
《曲阜师范大学学报(自然科学版)》
CAS
2008年第4期42-44,共3页
Journal of Qufu Normal University(Natural Science)
关键词
减控制函数
减控制数
界
:minus dominating function
minus domination number
bound