期刊文献+

关于图的减控制数

On Minus Domination in Graphs
下载PDF
导出
摘要 图G=(V,E),一个函数f:V(G)→{-1,0,1}称为G的减控制函数当且仅当对任意v∈V有∑u∈N[V]f(u)≥1.令f(V)=∑v∈Vf(v)为f的权.图G的减控制数γ-(G)=min{f(V)|f是一个减控制函数}.建立了几类特殊图的减控制数的值,并对一般图讨论了γ-(G)的界. Let G = (V, E) be a graph. A function f:V(G)→{-1,0,1} is said to be a minus dominating function if ∑u∈N[V]f (u)≥1for every v∈V. Let f(V) = ∑v∈Vf(v) be the weitht off. The minus domination number of G, denoted by γ^- (G) equal to min {f(V) │f is minus dominating function }. In this paper, some values of minus domination number for several special classes graphs are given and the bound of γ^- (G) for general graph is discussed.
出处 《曲阜师范大学学报(自然科学版)》 CAS 2008年第4期42-44,共3页 Journal of Qufu Normal University(Natural Science)
关键词 减控制函数 减控制数 :minus dominating function minus domination number bound
  • 相关文献

参考文献5

  • 1Bondy J A, Rmurty V S. Graph Theory with Applications[ M ]. Elsevier:Amsterdam, 1976.
  • 2Dunbar J E, Hedetniemi S T, Henning M A,et al. Minus domination in graphs[J]. Comput Math, 1996, 149:311-312.
  • 3Dunbar J E, Hedetniemi S T, Henning M A,et al. Minus domination in graphs[J]. Discrete Math, 1999,199:35-47.
  • 4Michael A. Henning M A. Signed total domination in graphs[J]. Discrete Math, 2004, 278:109-125.
  • 5王纪辉,张苏梅,吕乙婷.一类边覆盖临界图的构造[J].曲阜师范大学学报(自然科学版),2007,33(1):32-34. 被引量:1

二级参考文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部