期刊文献+

Fibonacci-k序列通项公式的矩阵证明方法

A Proof of the General Term of the Fibonacci-k Series Using the Matrix
下载PDF
导出
摘要 给出了Fibonacci序列的一种推广,称为Fibonacci-k序列,利用Fibonacci-k序列的递推关系,构造了Fibonacci-k相伴矩阵Qk,证明了第n个Fibonacci-k数可以用Qk的k个特征值进行表示. In this paper, a generalization of the series { Fn^(k)}. Using the recursion relationship of the series is established. The n-th the Fibonacci-k number Fibonacci series is given, which is called the Fibonacci-k Fibonacci-k series, the adjoint matrix Qk of the Fibonacci-k is proven, which can be expressed by the eigenvalues of Qk.
出处 《曲阜师范大学学报(自然科学版)》 CAS 2008年第4期122-124,共3页 Journal of Qufu Normal University(Natural Science)
关键词 Fibonacci-k序列 相伴矩阵 特征值 矩阵对角化 Fibonacci-k series adjoint matrix eigenvalues diagonal matrix
  • 相关文献

参考文献4

  • 1劳会学.Fibonacci数列通项公式的四个直接证明[J].数学的实践与认识,2007,37(15):180-182. 被引量:7
  • 2Emrah Kilie. The Binet formula, sums and representations of generralized Fibonacei p-numbers [ J ]. Europear Journal of combinatorics. 2008, 29:701-711.
  • 3Erdal Karaduman. Anapplication of Fibonacci numbers in matrices[ J ]. Applied Mathematics and Computation,2004, 147:903- 908.
  • 4Lee G Y, Lee S G, Shin H G. On the k-Generalized Fibonacci Matrix Qk[J]. Linear Algebra and its Applications, 1997, 251: 73 -88.

二级参考文献1

  • 1Leveque W J. Fundamentals of Number Theory[M]. Dover Publicatins Inc, New York.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部