期刊文献+

有向基因组移位排序算法的比较与评测 被引量:1

Comparison and Evaluation of Algorithms for the Translocation Sorting of Signed Genomes
下载PDF
导出
摘要 基因组重组是生物进化的一种重要模式。虽然其生物过程非常复杂,但可归结为三种基本操作:移位、反转和转位。移位排序问题要求计算从一个基因组转化为另一个基因组所需的最少移位次数以及相应的移位序列。对于有向基因组移位排序问题,目前有三个多项式时间算法。已有算法在分析偶隔离带时漏掉一种情况,从而导致对某些特殊实例的计算结果是不正确的。通过给出这种特殊情况下找有效移位的方法,用Java语言将三个算法实现为移位排序软件—SG-BT,其计算效率优于现有的移位排序软件CTRD。通过随机产生的实验数据对三个算法的计算性能进行了测试,结果表明,三个算法的计算效率在基因数为0-70000时基本相同,在基因数为80000-100000时才表现出差异,并且随着基因数的增加差异越发明显。通过进一步实验,分析了产生上述结果的原因。最后,用SGBT对人和老鼠的部分基因进行排序并给出排序结果。 Genome rearrangement is an important mode of the evolution of living things. Though the arrangement process is very complicated, there are three basic operations: translocation, reversal and transposition. The signed translocation problem is to find out the minimum number of translocation operations as well as the sequence of translocations required to transform one genome to another. As to this problem, there are three polynomial-time algorithms. The former algorithms omit a case when analyzing even-isolation. The omited case as well as the method to find a valid transloation in this case are presented in this paper. All the three algorithms are implemented to a software named SGBT, whose effenciency is better than the former software-CTRD. The computing performance of the three algorithms are compared and evaluated by analyzing the random data computed by SGBT. It is indicated that the computing efficiency of the three algorithms is almost the same when the number of genes is between 0 and 70,000. However, the difference can be seen when the number of genes is between 80,000 to 100000. Furthermore, the larger the number of genes is, the more palpable the difference is. Finally, the partial data of genomes of men and mice are sorted by SGBT and the result is given.
作者 尹晓 朱大铭
出处 《计算机与数字工程》 2008年第10期30-34,77,共6页 Computer & Digital Engineering
关键词 算法 基因组重组 移位 algorithm, genome rearrangement, translocation
  • 相关文献

参考文献12

  • 1J. Kececioglu, D. Sankoff. Exact and approximation algorithms for the inversion distance between two per mutations[C]. In Combinatorial Pattern Matching, Proc.4th Annual Symposium (CPM'93), volume 684 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 1993:87-105
  • 2V. Bafna, P. Pevzner. Sorting by reversals: Genome rearrangements in plant organelles and evolutionary history of X chromosome [J]. Mol. Biol. and Evol., 1995a, (12): 239-246
  • 3A. Caprara. On the tightness of the alternatingcycle lower bound for sorting by reversals [J]. Technical Report OR-98-4, DEIS-Operations Research Group, University of Bologna, 1998
  • 4S. Hannenhalli, P. A. Pevzner. Transforming cabbage into turnip (polynomial algorithm for sorting signed permutations by reversals)[C]. Proceedings of the 27th Annual ACM Symposium on Theory of Computing,Las Vegas, Nevada, 1995:178-189
  • 5H. Kaplan, R. Shamir and R E. Tarjan. Faster and simpler algorithm for sorting signed permutations by reversals [J]. SIAM Journal of Computing, 2000, 29(3): 880-892
  • 6V. Bafna, P.A. Pevzner. Sorting by transpositions[J]. SIAM Journal on Discrete Mathematics, 1998, 11 (2) :224-240
  • 7Sridhar Hannenhalli. Polynomial-time Algorithm for Computing Translocation Distance between Genomes [J]. CPM, 1995:162-176
  • 8朱大铭,马绍汉.基因组Translocation排序问题的改进多项式算法[J].计算机学报,2002,25(2):189-196. 被引量:7
  • 9WangSen Feng, Lusheng Wang, Daming Zhu. CTRD: a fast applet for computing signed translocation distance between genomes[J]. Bioinformatics. 2004, 20(17):3256-3257
  • 10Lusheng Wang, DamingZhu, Xiaowen Liu, Shaohan Ma. An O(n2) algorithm for signed translocation[J]. Journal of Computer and System Sciences. 2005, 70 (3) 284-299

二级参考文献12

  • 1[1]Sankoff D, Cedergren R, Abel Y. Genomic divergence through generearrangement, Molecular Evolution: Computer Analysis of Protein and Nucleic AcidSequences. New York: Academic Press, 1990
  • 2[2]Sankoff D, Leduc G, Antoine N et al. Gene order comparisons for phylogeneticinference: Evolution of the mitochondria genome. In: Proc National Acadamy Science,USA 89, 1992. 6575-6579
  • 3[3]Kececioglu J, Sankoff D. Exact and approximation algorithms for the inversiondistance between two permutations. Algorithmica, 1995, 13:180-210
  • 4[4]Bafna V, Pevzner P. Genome rearrangements and sorting by reversals. In: Procthe 34th IEEE Symposium on Foundations of Computer Science, 1993. 148-157
  • 5[5]Bafna V, Pevzner V. Sorting by reversals: Genome rearrangements in plantorganelles and evolutionary history of X chromosome, Mol. Biol.,1995,12:239-246
  • 6[6]Bafna V, Pevzner P. Sorting by transpositions. In: Proc 6th ACM-SIAMSymposium on Discrete Algorithms,1995. 614-623
  • 7[7]Hannenhalli S, Pevzner P. Transforming cabbige into tunip-polynomialalgorithm for sorting signed permutations by reversals. In: Proc the 27th ACMSymposium on the Theory of Computing, 1995. 178-189
  • 8[8]Hannenhalli S, Pevzner P. Transforming men into mice-polynomial algorithm forgenomic distance problem. In: Proc the 36th IEEE Symposium on Foundations ofComputer Science, 1995. 581-592
  • 9[9]Kececioglu J, Ravi R. Of mice and men: Evolutionary distances between genomesunder translocation. In: Proc the 6th ACM-SIAM Symposium on Discrete Algorithms,1995. 604-613
  • 10[10]Hannenhalli S. Polynomial-time algorithm for computing translocation distancebetween genomes. Discrete Applied Mathematics, 1996, 71:137-151

共引文献6

同被引文献8

  • 1Kececioglu J D,Ravi R.Of Mice and Men:Algorithms for Evolutionary Distance Between Genomes with Translocation[C] ∥Proc of the 6th ACM-SIAM Symp on Discrete Algorithm,1995:604-613.
  • 2Hannenhalli S.Polynomial Algorithm for Computing Translocation Distance Between Genomes[J].Discrete Applied Mathematics,1996,71(1-3):137-151.
  • 3Wang L,Zhu D,Liu X,et al.An O(n2) Algorithm for Signed Translocation[J].Journal of Computer and System Science,2005,70(3):284-299.
  • 4Bergeron A,Mixtacki J,Stoye J.On Sorting by Translocations[J].Journal of Computational Biology,2006,13(2):567-578.
  • 5Ozery-Flato M,Shamir R.Sorting by Translocations via Reversals Theory[C] ∥Proc of the 4th RECOMB Satellite Workshop on Comparative Genomics,2006:87-98.
  • 6Ozery-Flato M,Shamir R.An On3/2lg(n) Algorithm for Sorting by Reciprocal Translocations[C] ∥Proc of the 17th Annual Symp on Combinatorial Pattern Matching,2006:258-269.
  • 7Qi X,Li G,Li S,et al.Sorting Genomes by Reciprocal Translocations,Insertions and Deletions[J].IEEE/ACM Trans on Computational Biology and Bioinformatics,2010,7(2):365-374.
  • 8朱大铭,马绍汉.基因组Translocation排序问题的改进多项式算法[J].计算机学报,2002,25(2):189-196. 被引量:7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部