期刊文献+

基于I-Miner及S语言的分类算法研究

Classification Algorithm Research Based on I-Miner and S Language
下载PDF
导出
摘要 分类是一种重要的数据挖掘技术,其目的是根据数据集的特点构造一个分类函数或分类模型(也常常称作分类器),该模型能把未知类别的样本映射到给定类别中的某一个。通过介绍I-Miner下的数据挖掘实验方法,并利用S语言做成的脚本,实现了在I-Miner中没有实现的算法,主要介绍S语言实现分类算法中的K-最邻近算法,通过对不同数据集的实验,验证了K-最邻近算法的特性,并以此为今后改进算法做好基础。 Classification is one of the most important technology in data mining and aims to create a classification function or model(also called categorizer), which can classify an unknown sample into a well-defined class via characteristic of data sets. This paper introduces a new method of data mining based on I-Miner and uses a script made by S to describe an algorithm that never implemented in I-Miner. The K-Nearest neighbor classifier algorithm made by S is mainly introduced and its characteristic is proved by testing on different data sets. And consequently we lay the foundation for improving algorithm for the future.
出处 《计算机与数字工程》 2008年第10期45-47,161,共4页 Computer & Digital Engineering
关键词 分类 K-最邻近 I-Miner S语言 classification, K-nearest neighbor classifier, I-Miner, S language
  • 相关文献

参考文献4

二级参考文献6

  • 1刘红岩.可扩展的快速分类算法的研究与实现[M].北京:清华大学出版社,2000..
  • 2HanJiawei MichelineKambe.数据挖掘概念与技术[M].北京:机械工业出版社,2001..
  • 3Mehta M, Agrawal R, Rissanen J. SLIQ: A Fast Scalable Classifier for Data Mining[A]. Lecture Notes in Computer Sci. Proc. of the 5th Int.Conf. on Extending Database Tech. [C], 1996:18-33
  • 4Shafer J C, Agrawal R, Mehta M. SPRINT: A Scalable Parallel Classifier for Data Mining[A]. Mumbai(Bombay), India: Proc. of the 22nd Int. Conf. on Very Large Databases[C], 1996
  • 5Friedman N, Geiger D, Goldszmidt M. Bayesian Network Classifier[J].Machine Learning, 1997, 29( 1 ):131 - 163
  • 6Liu B, Hsu W, Ma Y. Integrating Classification and Association Rule Mining[A]. Agrawal R. Proc. of the 4th Int. Conf. on Knowledge Discovery and DataMining[C], NY, USA: AAAI Press, 1998:80-86

共引文献229

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部