摘要
主要证明了:若有限群G只含两个非次正规子群共轭类H=(H_1,H_2,…,H_m)和K={K_1,K_2,…,K_n},则G可解.其中|G|含两个或三个素因子,且G满足下列情形之一:(1)G=H■Q,其中H是具有循环极大子群的p-群,Q是Sylow q-子群,p,q为互不相同的素数;(2)G=K■Q,其中K是G的循环Sylow p-子群,Q是G的Sylow q-子群;(3)G=A■B,其中A是p^mq^n阶非幂零有限内-Abel群,B是Sylow r-子群,p,q,r为互不相同的素数.
In this paper the authors mainly proved that: If the finite group G has two conjugate classes of non-subnormal subgroups H= {H1 ,H2 …,Hm} and K= {K1 ,K2 …,Kn} , then G is soluble, and |G| has at most three prime factors, and G satisting one of the following conditions:
(1) G= H Q, where H is a p-group which has cyclic maximal subgroups, and Q is the Sylowq-subgroup of G, p and q are different primes.
(2) G:K Q, where K is a Sylow p-subgroup of G, K is cyclic, and Q is the Sylow q-subgroup of G.
(3) G:A B, where A is a non-nilpotent finite inner-abel group with order p^mq^n, B the a Sylow r-of G, and p, q, r are different primes.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第5期7-10,共4页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(10471112).
关键词
有限群
非次正规子群
共轭类
极大子群
finite group
non-subnormal subgroup
class of conjugate
maximal subgroup