摘要
在一般拓扑空间上研究拓扑动力系统的轨道渐近性质.证明了以下结果:设X是序列紧空间,f是X上的连续自映射,点x的ω-极限集ω(x,f)为有限集当且仅当它是f的一个周期轨.作为推论,在紧空间和可数紧空间中也有完全相同的结果.
This paper discusses the orbital asymptotic properties of a topological dynamical system whose base space is a sequentially compact space, and proves the main theorem: Let f be a continuous self-mapping on a sequentially space X, then ω-limit set ω(x, f) of a point :r∈X is a nonempty finite set if it is a periodic orbit of f. As inference, the authors get exactly the same conclusion when X is a compact (count- ably compact) space.
出处
《西南师范大学学报(自然科学版)》
CAS
CSCD
北大核心
2008年第5期39-42,共4页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(10671134).
关键词
ω-极限点
序列紧空间
连续自映射
周期轨
ω-limit point
sequentially compact space
continuous self-mapping
periodic orbit