期刊文献+

对小尺度生物体热声成像的反卷积重建法 被引量:3

Deconvolution Reconstruction of Thermoacoustic Imaging for Small-scale Objects
下载PDF
导出
摘要 目的为了提高热声成像的速度,针对小尺度待测生物体提出一种基于反卷积的热声成像算法:反卷积重建法。方法首先通过探测到的声压函数构造出一个新函数,然后基于反卷积方法从此新函数重建出待测生物体内部的电磁波吸收系数的分布。通过计算机仿真实验比较反卷积重建法和当前流行的时域重建法与滤波反投影法的性能。结果对于小尺度的待测生物体,反卷积重建法的精度与时域重建法相当,略好于滤波反投影法。在仿真实验条件下,反卷积重建法的速度约是时域重建法的4—6倍、滤波反投影法的25—100倍。结论对于小尺度生物组织的热声成像问题,反卷积重建法是一种快速有效的算法。 Objective To increase the speed of thermoacoustic imaging, a deconvolution reconstruction (DR) algorithm is proposed for small-scale need detecting living beings, on the basis of deconvolution of thermoacustic imaging algorithm. Methods A new function was firstly constructed from the detected acoustic pressure function. Then, the distribution of electromagnetic wave absorption coefficient of the need detecting living beings could be reconstructed from this new function based on the deconvolution method. Computer simulation studies were carried out to compare the DR algorithm with the two popular algorithms: the time-domain reconstruction (TDR) and the filtered back projection (FBP). Results For small-scale need detecting living beings, the accuracy of DR was nearly equivalent to TDR and slightly better than FBP. However, DR was about 4 to 6 times faster than TDR and about 25 to 100 times faster than FBP under the simulation experiment condition. Conclusion DR is a fast and effective algorithm of thermoacoustic imaging for small-scale living beings.
作者 张弛 汪源源
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2008年第5期420-424,共5页 Space Medicine & Medical Engineering
基金 国家重点基础研究规划基金(2006CB705707)资助项目
关键词 热声成像 反卷积 小尺度 快速算法 thermoacoustic imaging deconvolution small-scale fast algorithm
  • 相关文献

参考文献2

二级参考文献8

共引文献20

同被引文献43

  • 1孙晓冬,周雨琦,马青玉.磁感应磁声电导率图像重建研究[J].声学技术,2013,32(S1):147-148. 被引量:4
  • 2曾亚光,邢达,付洪波,王毅.光声层析成像的信号处理[J].中国激光,2005,32(1):97-100. 被引量:11
  • 3杨迪武,邢达,王毅,谭毅,尹邦政.基于代数重建算法的有限角度扫描的光声成像[J].光学学报,2005,25(6):772-776. 被引量:19
  • 4向良忠,邢达,谷怀民,杨迪武,杨思华,曾吕明.改进的同步迭代算法在光声血管成像中的应用[J].物理学报,2007,56(7):3911-3916. 被引量:14
  • 5S. M. Riad. The deconvolution problem: an overview[C]. Proc. IEEE, 1986, 74(1): 82-85
  • 6A. Bennia, S. M. Riad. An optimization technique for iterative frequency-domain deconvolution[J].IEEE Trans. Instrum. Meas., 1990, 39(2): 358-362
  • 7D. Huang, C. Liao, C. Wei et al.. Simulations of optoacoustic wave propagation in light-absorbing media using a finite-difference time-domain method[J]. J. Acoust. Soc. Am. , 2005, 117(5) : 2795-2801
  • 8H. F. Zhang, K. Maslov, G. Stoica et al.. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging[J]. Nat. Biotechno., 2006, 24(7): 848-851
  • 9J. J. Niederhauser, M. Jaeger, R. Lemor et al. Combined ultrasound and optoacoustic system for real-time high-contrast vascular imaging in vivo [J]. IEEE Trans. Med. Imaging, 2005, 24(4):436-440
  • 10C. Wei, S. Huang, C. Wang et al.. Photoacoustic tlow measurements based on wash-in analysis of gold nanorods[J]. IEEE Trans. Ultrason. , Ferroelect. , Freq. Contr. , 2007, 54(6) : 1131-1141

引证文献3

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部