摘要
对弹性非保守简支矩形薄板,从弹性非保守系统有限变形的拟变分原理出发,导出大挠度屈曲的VonKarman方程。用Galerkin法求得二级近似解,得出的初始后屈曲性态是稳定的,从而为工程实际中利用板的后屈曲超载性能提供了理论依据。
Based on the quasi-variational principle of finite deformation in non-conservativesystems, the Von Karman large deflection buckling equations are derived for simply-supportedrectangular plate subjected to non-conservative force. Two-order asymptotic solution is obtainedby Galerkin method. It is shown that initial post-buckling of the plate is stable. The conclusionwill provide theoretical basis for using overload capacity of the large deflection buckling plate inengineering design.
出处
《西安理工大学学报》
CAS
1997年第3期238-242,共5页
Journal of Xi'an University of Technology
基金
机械工业部科技基金
关键词
非保守力
板
大挠度
后屈曲
弹性
简支板
non-conservative force
plate
large deflection
post-buckling