期刊文献+

可约中心构形因子分解的应用

Application of Factorization of Central Hyperplane Arrangements
下载PDF
导出
摘要 研究了可约超平面中心构形因子分解的应用.得到了可约中心构形与其因子构形的麦比乌斯函数和庞加莱多项式之间的关系;并且利用线性代数的基本性质给出了构形超可解性的一个定理的证明:若中心构形A1,A2,L,Acc是超可解构形,那么它们的乘积构形A=A1×A2×L×Acc也是超可解的. This paper describes the significance of factorization of arrangements through some specific examples,The relationship between the subarrangements and the origin arrangement is also discussed. It is proved that if the arrangement is a product of several supersolvable subarrangements, it is also supersolvable.
作者 程淑华
出处 《湖南工程学院学报(自然科学版)》 2008年第2期44-47,共4页 Journal of Hunan Institute of Engineering(Natural Science Edition)
关键词 超平面构形 麦比乌斯函数 庞加来多项式 超可解构形 hyperplane arrangement M bius Function the Poincare Polynomial supersolvable arrangement
  • 相关文献

参考文献2

二级参考文献3

  • 1Richard P.An introduction to hyperplane arrangements[M].America:Park City Mathematics Series,2004:1-39.
  • 2Orlik P,Terao H.Arrangements of hyperplanes[M].Berlin,Heidelberg:Springer-Verlag,1992:1-57.
  • 3Jacobsion N.Basic algebra[M].Berlin,Heidelberg:Springer-Verlag,2002.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部