期刊文献+

用有限元解奇异摄动边值问题的移动网格算法

A Moving Mesh Algorithm Based on FEM for Singularly Perturbed Boundary Value Problems
下载PDF
导出
摘要 考虑一类奇异摄动边值问题.为了对其数值求解,与文[1,2]不同的是,采用基于有限元方法的移动网格算法.采用的网格有(N+1)个节点并初始化为均匀网格,其节点采用一种迭代算法来自适应移动,该算法等分布分片线性数值解函数弧长.用数值试验证实了该方法产生的数值解是关于摄动参数ε一致收敛的. Akind of singularly perturbed boundary value problem is investigated. A moving mesh algorithm based on finite element method is applied. The mesh has a fixed number(N+1) of nodes and is initially uniform, but its nodes are moved adaptively by using an iterative algorithm based on equidistribution of the arc-length of the current computed piecewise linear solution. Numerical experiments are carried out, which testifies that the approximations are uniformly convergent with the perturbation parameter.
作者 杨继明
出处 《湖南工程学院学报(自然科学版)》 2008年第3期46-48,共3页 Journal of Hunan Institute of Engineering(Natural Science Edition)
基金 湖南省教育厅科研资助项目(07C219)
关键词 奇异摄动 有限元 移动网格 等分布 singularly perturbed finite element moving mesh equidistribution
  • 相关文献

参考文献6

  • 1杨继明.用等分布原理求解一类奇异摄动两点边值问题的数值算法[J].湖南工程学院学报(自然科学版),2004,14(2):84-87. 被引量:4
  • 2杨继明,陈艳萍.一类奇异摄动对流扩散边值问题的移动网格方法[J].湘潭大学自然科学学报,2004,26(3):24-29. 被引量:12
  • 3G. Beckett and J. A. Mackenzie,On a uniformly accurate finite difference approximation of a singularly perturbed reaction-diffusion problem using grid equidistribution[J]. J. Comput. Appl. Math. , 2001,131 : 381 -- 405.
  • 4Yanping Chen, Uniform convergence analysis of finite difference approximations for singular perturbation problems on an adapted grid[J]. Advances in Computational Mathematics, 2006,24 (1-- 14) :197--212.
  • 5NATALIA KOPTEVA and MARTIN STYNES, A robust adaptive method for a quasi-linear one dimensional convection--diffusion problem[J]. SIAM J. Numer. Anal. , 2001,39 (4) : 1446-- 1467.
  • 6T. Linss, Uniforming pointwise convergence of finite difference schemes using grid equidistrihution [J]. Computing, 2001,66 : 27--39.

二级参考文献17

  • 1[6]J.J.H. Miller, E. O' Riordan, G. I. Shishkin. Solution of singularly perturbed problems with ε- uniform numerical methods-Introduction to the theory of linear problems in one and two dimensions[ M]. World Scientific, Singapore,1996.
  • 2[7]Y. Qiu,D. M. Sloan, T. tang. Numerical solution of a singularly perturbed two-point boundary value problem using equidistribution: analysis of convergence [J ]. J. Comput.Appl. Math. ,2000,116:121 - 143.
  • 3[8]White, A. B. On selection of equidistributing meshes for two-point boundary problems[ J ]. SIAM J. Numer. Anal.1979,16:472 - 502.
  • 4[1]G. Beckett. The robust and efficient numerical solution of singularly perturbed boundary value problems using gird adaptivity [ J ]. Ph. D. thesis, University of Strathclyed,1999.
  • 5[2]Yanping Chen. Uniform convergence analysis of finite difference approximations of a singularly perturbed boundary value problem on an adapted grid, (in press).
  • 6[3]N. KOPTEVA. Maximum norm a posteriori error estimates for a one-dimensional convection diffusion problem[J]. SIAM J. Numer. Anal. ,2001,39:423 - 441.
  • 7[4]NATALLA KOPTEVA, MARTIN STYNES. A robust adaptive method for a quasi-linear one dimensional convection- diffusion problem [ J ]. SIAM J. Numer. Anal,2001,39(4) :1446 - 1467.
  • 8[5]Torsten Linβ. Uniform pointwise convergence of finite difference schemes using grid equidistribution [ J ]. Computing, 2001,66 ( 1 ): 27 - 39.
  • 9Beckett G,Mackenzie J A.Convergence analysis of finite difference approximations on equidistributed grids to a singularly perturbed boundary value problem[J].Appl Numer Math,2000,35:87-109.
  • 10Yanping Chen.Uniform convergence analysis of finite difference approximations for singularly perturbed problems on an adapted grid[J]. Submitted to Advances in Computational Mathematics.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部