期刊文献+

关于带周期系数的Bernoulli方程及其较好的离散模型

On Bernoulli Equation with Periodic Coefficients and Its "Best" Discrete Model
下载PDF
导出
摘要 带有周期系数的Bernoulli微分方程解的存在性、唯一性和全局渐近稳定性被考虑,被获得的结果也适合它的特殊情况Logistic模型.同时,也给出了一个比较好的离散形式,它完全遗传了连续模型的性质. The existence, the uniqueness, and the global asymptotically stable of the Bernoulli equation with periodic coefficients will be considered in this note. The obtained resuh clearly holds for the Logistic equation because it is the sepcial case of the Bernoulli equation. At the same time, a "best" Bernoulli discrete model is considered and the dynamics behavior of the corresponding diffierential equation will be inherited.
出处 《山西大同大学学报(自然科学版)》 2008年第4期6-7,22,共3页 Journal of Shanxi Datong University(Natural Science Edition)
关键词 BERNOULLI方程 LOGISTIC方程 周期解 稳定性 离散模型 bernoulli equation Logistic equation periodic solution stability discrete model
  • 相关文献

参考文献5

  • 1[1]Fan M,Wang K.Optimal harvesting policy for single population with periodic coefficients[J].Mathematical Biosciences,1998,152:65-77.
  • 2[2]May R M.Simple mathematical models with very complicated dynamics[J].Nature,1976,1(261):459.
  • 3[3]Li T.Y,Yorke J A.Period three implies chaos,Amer[J].Math.Monthly,1975,82(10):985-992.
  • 4[4]Mickens R E.Genesis of elementary numerical instabilities in finite-difference models of ordinary differential equations[A].Ladde G S,Sambandham M(Ed).Proceedings of Dynamics Systems and Applications[C].USA:Dynamics publisher,1994.251-258.
  • 5[5]Liu P.Z,Cui A Y.A discrete model of competition[J].Mathematics and Computers in Simulation,1999,49:1-12.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部