摘要
使用酸雨时间序列作为训练样本的基础,生成训练样本输入数据和期望输出数据,建立时间序列神经网络预测模型。通过误差反向传播的算法训练神经网络,获得输入输出之间的映射关系,得到未来3年的酸雨数据。BP神经网络模型的应用设计借助于MAT-LAB软件包中的神经网络工具箱完成。
The acid rain time series was used as the basis of training for generating input data and expectations of output data, and establishing time series neural network forecasting model. Through error reverse spread to train neural network algorithm, the mapping relation between input and output was obtained and the acid rain data in the next three years were gained. The design of BP neural network model was accomplished by MATLAB software package of neural network toolbox.
出处
《安徽农业科学》
CAS
北大核心
2008年第26期11504-11505,共2页
Journal of Anhui Agricultural Sciences
关键词
人工神经网络
酸雨
预测
Manual neural network
Acid rain
Forecast