期刊文献+

基于DPSO的改进AO^*算法在大型复杂电子系统最优序贯测试中的应用 被引量:19

Applying Improved AO^* Based on DPSO Algorithm in the Optimal Test-Sequencing Problem of Large-scale Complicated Electronic System
下载PDF
导出
摘要 针对大型复杂电子系统最优序贯测试问题,提出一种基于离散粒子群算法(DPSO)和改进AO^*算法相结合的方法.DPSO优化AO^*算法中每个要扩展节点的测试集从而减少测试个数;改进AO^*算法通过规定扩展节点估价值的范围,减少其回溯次数.实例验证表明,该算法不仅有效地降低了计算复杂度,大大减少测试代价,缩短测试时间,而且避免了原有AO^*算法当备选的测试集太大时容易出现“计算爆炸”的缺点. An algorithm of improved AO^* based on discrete binary particle swarm optimization (DPSO) is proposed, which can solve the Optimal Test-sequencing problem in large-scale complicated electron system. DPSO optimizes the test sets which can isolate the expanded node in AO^* algorithm to decrease the number of node; The improved AO^* limits the test cost range of node and lessens the traces. The result of real operation show that this algorithm not only reduces the computational complexity, cuts down the test cost, shorten the test time; but also avoids the "computational explosion" when the test set is too large.
出处 《计算机学报》 EI CSCD 北大核心 2008年第10期1835-1840,共6页 Chinese Journal of Computers
基金 国家基础科研项目基金(A1420061264) 预研基金(51317040102)资助~~
关键词 离散粒子群算法 AO^*算法 序贯测试 哈夫曼编码 可测性设计 discrete binary particle swarm optimization AO^* Algorithm test sequence Huffman coding design for testability
  • 相关文献

参考文献9

  • 1Pattipati K R, Alexandridis M. Application of heuristic search and information theory to sequential fault diagnosis. IEEE Transactions on SMC, 1990,20(4):872-887
  • 2Raghavan V, Shakeri M, Pattipati K R. Optimal and near optimal test sequencing algorithms with realistic test models. IEEE Transactions on SMC, 1999, 29(1): 11 27
  • 3Shakeri M, Raghavan V, Pattipati K R. Sequential testing algorithms for multiple fault diagnosis. IEEE Transactions on SMC, 2000, 30(1): 1-14
  • 4Tu Fang, Pattipati K R, Deb Set al. Computationally efficient algorithms for multiple fault diagnosis in large graphbased systems. IEEE Transactions on SMC, 2003, 33 (1) :73-85
  • 5于劲松,徐波,李行善.基于遗传算法的序贯诊断测试策略生成[J].系统仿真学报,2004,16(4):833-836. 被引量:14
  • 6Kundakcioglu O Erhun, Unltiyurt Tongue. Bottom-up construction of minimum-cost AND/OR trees for sequential fault diagnosis. IEEE Transactions on SMC, 2007, 37(5) : 621- 629
  • 7Kennedy J, Eberhart R C. Particle swarm optimization//Proceedings of the IEEE Conference on Neural Networks. IV, Piscataway, 1995: 1942-1948
  • 8Kennedy J, Eberhart R C. A discrete binary version of the particle swarm algorithm//Proceedings of the World Multiconference on Systemic, Cybernetics and Informatics. Piscataway, NJ, 1997:4104 -4109
  • 9Eberhart R C, Shi Y. Comparing inertia weights and constriction factors in particle swarm optimization//Proceedings of the 2000 Congress on Evolutionary Computation. San Diego, 2000:84-88

二级参考文献3

  • 1Sharon Goodall.Analog/Mixed Signal Fault Diagnosis Algorithm and Tool Review[].IEEE Autotestcon.1994
  • 2Mark Brodie,Irina Rish,Sheng Ma.Optimizing Probing Selection for Fault Localization[].Proceedings of DSOM.2001
  • 3PATTIPATI KR,ALEXANDRIDIS MG.Application of Heuristic Search and Information Theory to Sequential Fault Diagnosis[].IEEE Transactions on Systems Man and Cybernetics.1990

共引文献13

同被引文献166

引证文献19

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部