期刊文献+

基于离群点检测的鲁棒局部切空间排列方法

Robust Local Tangent Space Alignment Based on Outlier Detection
下载PDF
导出
摘要 研究局部切空间排列方法(LTSA)对离群点的敏感性,提出一种基于离群点检测的鲁棒局部切空间排列方法(RLTSA).该方法用样本点到切空间的投影距离检测离群点.在构造样本点局部邻域时,RLTSA尽可能排除离群点,以构造稳定的局部邻域,而对离群点,RLTSA把它们投影到更高维的切空间,以减少离群点的投影距离.模拟实验和实际例子说明,新方法能提高局部切空间排列方法处理离群样本点的能力. The paper focuses on the sensitivity of local tangent space alignment (LTSA) to outliers, and presents a robust local tangent space alignment (RLTSA) based on outlier detection. RLTSA detects the outliers by the projection distances of the sample points onto their tangent spaces. When constructing the neighborhoods of the sample points, RLTSA removes the outliers to construct stably local neighborhood. For the outliers, RLTSA projects them onto higher dimensional tangent spaces to reduce their projection distances. Simulation and real examples show that the new approach can improve the ability of LTSA to deal with outliers.
作者 王靖
出处 《华侨大学学报(自然科学版)》 CAS 北大核心 2008年第4期522-526,共5页 Journal of Huaqiao University(Natural Science)
基金 福建省青年科技人才创新基金(2007F3067) 华侨大学高层次人才科研启动项目(06BS304)
关键词 鲁棒 离群点 流形学习 局部切空间排列 robust outlier manifold learning local tangent space alignment
  • 相关文献

参考文献8

  • 1TENENBAUM J, SILVA V D, LANGFORD J. A global geometric framework for nonlinear dimension reduction [J]. Science, 2000, 290: 2319-2323.
  • 2ROWELS S, SAUL L. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000,290:2323- 2326.
  • 3ZHANG Z,WANG J. MLLE: Modified locally linear embedding using multiple weights[C]// Advances in Neural Information Processing Systems,2007.
  • 4BELKIN M, NIYOGI P. Laplacian eigenmaps and spectral techniques for embedding and clustering[M]//Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2001.
  • 5ZHANG Z, ZHA H. Principal manifolds and nonlinear dimensionality reduction via tangent space alignment[J]. SIAM J Scientific Computing, 2005, 26(1):313-338.
  • 6SILVA V,TENENBAUM J B. Global versus local methods in nonlinear dimensionality reduetion[C]// Advances in Neural Information Processing Systems. Cambridge: MIT Press, 2003 : 705-712.
  • 7ZHANG Z,ZHA H. Local linear smoothing for nonlinear manifold learning[R]. PA:Pennsylvania Statue University, 2003.
  • 8CHANG H, YEUNG D Y. Robust locally linear embedding[J]. Pattern Recognition, 2006, 39(6):1053-1065.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部