期刊文献+

基于支持向量机特征选择的贝叶斯网结点序

Node order of Bayesian network based on feature selection using Support Vector Machine
下载PDF
导出
摘要 目前较常采用搜索打分方法进行贝叶斯网络结构学习,该方法需要首先依据参与者的经验来确定网络的结点顺序,主观性较强,限制了它的实际应用。基于支持向量机特征选择的方法,可以按照各个结点对叶结点的影响能力进行排序,从而直接从数据中通过学习得出结点顺序,避免了人为因素的影响。实验结果验证了该方法的有效性。 At present,the method of search and score is widely used for learning the structure of Bayesian network.The method needs first the node order in the network,which is usually decided according to user's experience,so the strong subjectivity blocks the method's practical application.By measuring every, node's influence on the leaf node,feature selection based on sup- port vector machine can learn the node order from data and get rid of the effects of human factors.Experimental results show the proposed method is effective.
出处 《计算机工程与应用》 CSCD 北大核心 2008年第29期21-23,共3页 Computer Engineering and Applications
基金 国家自然科学基金No.30670699~~
关键词 贝叶斯网络 支持向量机 特征选择 Bayesian network support vector maehine feature selection
  • 相关文献

参考文献10

  • 1Cheng Jie,Greiner R,Kelly J,et al.Learning Bayesian networks from data:An information-theory based approach[J].Artificial Intelligence, 2002,137( 1 ):43-90.
  • 2Feelders A,van der Gaag L C.Learning Bayesian network parameters under order eonstraints[J].International Journal of Approximate Reasoning, 2006,42( 1 ): 37-53.
  • 3Cooper G F,Hersknvits E.A Bayesian method for the induction of prohabilistie networks from data[J].Maehine Learning, 1992,9: 309- 347.
  • 4Frey B J,Jojic N.A comparison of algorithms for inference and learning in probahilistic graphical models[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(9 ) : 1392-1416.
  • 5Hermes L,Buhmann J M.Feature selection for support vector machines[C]//Proc of the 15th International Conference on Pattern Recognition, Barcelona, Spain,2000 : 716-719.
  • 6Vapnik V.An overview of statistical learning theory[J].IEEE Trans Neural Networks, 1999,10(5 ) :988-999.
  • 7Murphy K P.Bayes Net toolbox for mallab [EB/OL].[2007-10-19]. http ://www.cs.ube.ca/-murphyk/Soflware/BNT/bnt.html.
  • 8Platt J C.Fast training of supporl vector machines using sequential minimal optimization[M]//Advances in Kernel Methods:Support Vector Machines.Cambridge, MA : MIT Press, 1999 : 185-208.
  • 9Chang C C,Lin C J.LIBSVM:A library for support vector machines[EB/OL].[2007-12-23].http ://www.csie.ntu.edu.tw/-cjlin/libsvnl.
  • 10Lauritzen S I..Propagation of probabilities,means and variances in mixed graphical association models[J].Journal of the American Statistical Association, 1992,87(420) : 1098-1108.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部