摘要
近年来运用进化算法(EAs)解决多目标优化问题(Multi-objective Optimization Problems MOPs)引起了各国学者们的关注。作为一种基于种群的优化方法,EAs提供了一种在一次运行后得到一组优化的解的方法。差分进化(DE)算法是EA的一个分支,最开始是用来解决连续函数空间的问题。提出了一种改进的基于差分进化的多目标进化算法(CDE),并且将它与另外两个经典的多目标进化算法(MOEAs)NSGA-Ⅱ和SPEA2进行了对比实验。
Recently,the use of evolutionary algorithms(EAs) to solve the Multi-objective Optimization Problems(MOPs) has attracted much attention.EA is a population based optimized approach which can find a group of Pareto-optimal solutions in a single run.Differential Evolution(DE) is a branch of EA that is developed to handle problems over continuous domains.An improved Multi-objective Evolutionary Algorithm is proposed based on Differential Evolution(CDE) to solve MOPs.The proposed algorithm is compared to the other two classical Muhi-objective Evolutionary algorithms(MOEAs) NSGA-Ⅱ and SPEA2 with the experiment results.
出处
《计算机工程与应用》
CSCD
北大核心
2008年第29期51-56,共6页
Computer Engineering and Applications
基金
国家自然科学基金No.60773047
湖南省教育厅重点科研项目(No.06A074)~~
关键词
多目标优化
差分进化
多目标进化算法(CDE)
mohi-objective optimization
differential evolution
Multi-objective Optimization(CDE)