期刊文献+

一种改进的基于差分进化的多目标进化算法 被引量:6

Improved multi-objective evolutionary algorithm based on differential evolution
下载PDF
导出
摘要 近年来运用进化算法(EAs)解决多目标优化问题(Multi-objective Optimization Problems MOPs)引起了各国学者们的关注。作为一种基于种群的优化方法,EAs提供了一种在一次运行后得到一组优化的解的方法。差分进化(DE)算法是EA的一个分支,最开始是用来解决连续函数空间的问题。提出了一种改进的基于差分进化的多目标进化算法(CDE),并且将它与另外两个经典的多目标进化算法(MOEAs)NSGA-Ⅱ和SPEA2进行了对比实验。 Recently,the use of evolutionary algorithms(EAs) to solve the Multi-objective Optimization Problems(MOPs) has attracted much attention.EA is a population based optimized approach which can find a group of Pareto-optimal solutions in a single run.Differential Evolution(DE) is a branch of EA that is developed to handle problems over continuous domains.An improved Multi-objective Evolutionary Algorithm is proposed based on Differential Evolution(CDE) to solve MOPs.The proposed algorithm is compared to the other two classical Muhi-objective Evolutionary algorithms(MOEAs) NSGA-Ⅱ and SPEA2 with the experiment results.
作者 李珂 郑金华
出处 《计算机工程与应用》 CSCD 北大核心 2008年第29期51-56,共6页 Computer Engineering and Applications
基金 国家自然科学基金No.60773047 湖南省教育厅重点科研项目(No.06A074)~~
关键词 多目标优化 差分进化 多目标进化算法(CDE) mohi-objective optimization differential evolution Multi-objective Optimization(CDE)
  • 相关文献

参考文献23

  • 1Deb K,Pratap A,Agarwal S,et al.A fast and elitist muhiobjective Genetic Algorithm:NSGA-II[J].IEEE Transactions on Evolutionary Computation, 2002,6 ( 2 ) : 182-197.
  • 2Zitzler E,Laumanns M,Thiele L.SPEA2:improving the strength pareto evolutionary algorithm.Technical Report 103 [R].Computer Engineering and Networks Laboratory (TIK),ETH Zurich,Zurich, Switzerland,2001.
  • 3Knowles J D,Corne D W.The Pareto archived evolution strategy:A new baseline algorithm for Pareto multiobjective optimization[C]// CEC'99:Proceedings of the 1999 Congress on Evolutionary Computation.Piscataway,New Jersey:IEEE Service Center, 1999:98-105.
  • 4Come D W.The pareto envelope based selection algorithm for multiobjective optimization[C]//Schoenauer M.LNCS:Proc Parallel Problem Solving from Nature,PPSN VI,2000,1917: 839-848.
  • 5Edgeworth F Y.Mathematical Psychics [M].London,England:P Keagan, 1881.
  • 6Pareto V.Cours D'Economie Politique:volume I and II.F.Rouge, Lausanne, 1896.
  • 7Kukkonen S,Lampinen J.Comparison of generalized differential evolution algorithm to other multiobjective evolutionary algorithms[C]// Proceedings of the 4th European Congress on Computational Methods in Applied Sciences and Engineering(ECCOMAS2004),Jyv"askyl"a, Finland,July 2004:445.
  • 8Kukkonen S,Lampinen J.An extension of generalized differential evolution for muhi-objective optimization with constraints[C]//Proceedings of the 8th International Conference on Parallel Problem Solving from Nature(PPSN VIII),Birmingham,Finland,Sept 2004: 752-761.
  • 9Kukkonen S,Lampinen J.GDE3:The third evolution step of Generalized Differential Evolution[C]//Proeeedings of the 2005 Congress on Evolutionary Computation(CEC2005),Edinburgh,Scotland,Sept 2005:443-450.
  • 10Price K V.New ideas in optimization[M]//An Introduction to Differential Evolution.London : McGraw-Hill, 1999 : 79-108.

同被引文献54

引证文献6

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部