期刊文献+

基于梯度拥挤度的多样性保持策略的MOEA

MOEA Algorithm Based on the Improved Diversity Maintenance Strategy
下载PDF
导出
摘要 为了在多目标演化算法解决问题时保证解集的多样性,提出了一个有效的梯度拥挤度多样性保持策略,以及基于该保持策略的多目标演化算法;设计了多样性的熵度量准则,以及多样化种群初始策略。实验证明,提出的算法在种群多样性保持方面取得了较好的效果。 An efficient method for pruning non - dominated set and a muhi - objective evolutionary algorithm were proposed in order to maintain the population diversity. The entropy metrics for testing the population diversity as well as the diversity initial population strategy were proposed . The experiment results show that the algorithm is effective in diversity maintenance.
出处 《武汉理工大学学报(信息与管理工程版)》 CAS 2008年第5期696-700,共5页 Journal of Wuhan University of Technology:Information & Management Engineering
基金 国家自然科学基金资助项目(40701153)
关键词 多目标演化算法 多样性保持策略 熵度量 muhi -objective evolutionary algorithm diversity maintenance strategy entropy metrics
  • 相关文献

参考文献8

  • 1SCHAFFER J D. Multiple objective optimization with vector evaluated genetic algorithms [ C ]. In : Proc. 1^st Int. Conference on Genetic Algorithms. Mahwah: Lawrence Erlbaum Associates Inc. , 1985:99 -100.
  • 2SRINWAS N, DEB K. Multi -objective optimization using non- dominated sorting in genetic algorithms [ J]. Evolutionary Computation, 1994, 2 (3) : 221 - 248.
  • 3HORN J, NAFPLIOTIS N, GOLDBERG D E. A niched pareto genetic algorithm for multi - objective optimization [C]. In: Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE World Congress on Computational Intelligence. N J: IEEE Service Center, 1994 : 82 - 87.
  • 4FONSECA C M, Fleming P J. Genetic algorithms for multi-objective optimization: formulation, discussion and generalization [ C ]. In: Forrest S. at Proceedings of the Fifth International Conference on Genetic Algorithms, California: San Mateo, 1993 : 416 -423.
  • 5ZITZLER E, THIELE L. An evolutionary algorithm for multiobjective optimization: the strength pareto approach [ R ]. [ s. l. ] : Computer Engineering and Communication Networks Lab (TIK) , Swiss Federal Institute of Technology ( ETH), 1998.
  • 6ZITZLER E, LAUMANNS M, THIELE L. SPEA2:Improving the strength pareto evolutionary algorithm for multi - objective optimization [ R]. [ s. l] : Computer Engineering and Communication Networks Lab ( TIK ) , Swiss Federal Institute of Technology (ETH) ,2001.
  • 7DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multi -objective genetic algorithm: NSGA -Ⅱ [ J ]. IEEE Transactions on Evolutionary Computation, 2002, 6(2) : 182 - 197.
  • 8ZITZLER E, DEB K, THIELE L. Comparison of multi -objective evolutionary algorithms: empirical results [ J ]. Evolutionary Computation, 2000, 8 ( 2 ) : 173 - 195.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部