期刊文献+

利用团块模型进行目标跟踪 被引量:6

Appearance model based on blobs for object tracking
下载PDF
导出
摘要 提出了一种基于局部特征的目标跟踪算法.通过多尺度分析方法,根据颜色和空间上的相似性将目标分割为多个区域,每个区域由一个团块表示,团块包含了该区域所有像素的颜色均值、形状和位置.根据团块特征构造目标的外观模型,定义团块的匹配准则,通过团块匹配进行目标跟踪.由于目标模型是基于局部特征的,并且包含目标的全局空间结构,因此该算法在局部遮挡和目标尺度变化的情况下,依然能够进行准确地跟踪.实验表明该算法能够有效实现复杂场景下的目标跟踪,性能优于Mean-shift算法. This paper proposes a novel local feature-based object tracking algorithm. The object is segmented into a few regions using multiple scale segmentation, and each region is denoted as a blob which combines the local color, shape and location. An object appearance model is built based on the blob feature. The object is tracked by the blob matching criterion defined. The appearance model includes the local color and spatial structures, so the object can be tracked in the condition of partial occlusion and change of the object scale Examples demonstrate that the proposed algorithm can obtain the accurate tracking results in the complex environment and has better performance than the well-known mean shift algorithm.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2008年第5期799-804,共6页 Journal of Xidian University
基金 国家自然科学基金资助(60677040)
关键词 目标跟踪 外观模型 团块匹配 图像分割 object tracking appearance model blob matching image segmentation
  • 相关文献

参考文献9

  • 1Jepson A D, Fleet D J, El-Maraghi T F. Robust Online Appearance Models for Visual Tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, Vol. 25(10): 415-522.
  • 2Avidan S. Support Vector Tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26 (8): 1064- 1 072.
  • 3Han B, Davis L. On-line Density-based Appearance Modeling for Object Tracking[C]//Proceeding of International Conference on Computer Vision (ICCV): 2. Beijing: IEEE, 2005:1 492-1499.
  • 4Comaniciu D, Ramesh V, Meer P. Kernel-based Object tracking[J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25 (5): 564-577.
  • 5Hager G D, Dewan M, Stewart C V. Multiple Kernel Tracking with SSD[C]//IEEE International Conference on Computer Vision and Pattern Recognition(CVPR): 1. Washington: IEEE, 2004: 790-797.
  • 6Collins R T. Mean-Shift Blob Tracking through Scale Space[-C]//IEEE International Conference on Computer Vision and Pattern Reeognition(CVPR): 2. Madison, Wisconsin: IEEE, 2003: 234-240.
  • 7Forsse P E, Moe A. View Matching with Blob Features[C]//Proceeding the 2nd Canadian Conference on Computer and Robot Vision. Vietora B C: IEEE, 2005: 228- 235.
  • 8ISCAPS Consortium. PETS2006 Dataset[DB/OL]. [2007-03-05]. http://ftp, cs. rdg. ac. uk/PETS2006/.
  • 9FISHER R. CAVIAR Test Case Scenarios[DB/OL].[2007-01-12]. http..//groups. inf. ed. ac. uk/vision/CAVIAR/ CAVIARDATA1/.

同被引文献45

  • 1秦卫华,胡飞,蔡小斌.基于递推加权最小二乘法的多目标跟踪算法[J].计算机测量与控制,2005,13(8):840-842. 被引量:9
  • 2石华伟,夏利民.基于Mean Shift算法和粒子滤波器的人眼跟踪[J].计算机工程与应用,2006,42(19):26-28. 被引量:11
  • 3单勇,王润生,杨凡.基于多特征背景模型的运动目标检测算法[J].计算机工程与科学,2007,29(8):40-42. 被引量:4
  • 4SUDDERTH E B, MANDEL M I, FREEMAN W T, et al. Visual hand tracking using nonparametric belief propagation[C]//Proc of Computer Vision and Pattern Recognition Workshop. Washington DC:IEEE Computer Society, 2004:189-197.
  • 5TATIKONDA S C, JORDAN M I. Loopy belief propagation and Gibbs measures[C]//ADNAN D, NIR F. Proc of the 18th Conference on Uncertainty in artificial intelligence. SanFrancisco:Morgan Kaufmann, 2002:493-500.
  • 6HAN T X, NING H, HUANG T S. Efficient nonparametric belief propagation with application to articulated body tracking[C]//Proc of IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington DC:IEEE Computer Society, 2006:214-221.
  • 7YEDIDIA J S, FREEMAN W T, WEISS Y. Understanding belief propagation and its generalizations[M]//LAKEMEYER G, NEBEL B. Exploring artificial intelligence in the new millennium. San Francisco:Morgan Kaufmann, 2002:239-269.
  • 8SUDDERTH E B, IHLER A T, FREEMAN W T, et al. Nonparame-tric belief propagation[C]//Proc of IEEE Computer Society Confe-rence on Computer Vision and Pattern Recognition. Washington DC:IEEE Computer Society, 2003:605-612.
  • 9JIA Yun-de, ZHANG Xiao-xun, LI Ming-xiang, et al. A miniature stereo vision machine (MSVMIII) for dense disparity mapping[C]//Proc of the 17th International Conference on Pattern Recognition. Washington DC:IEEE Computer Society, 2004:728-731.
  • 10JORDAN M I, WEISS Y. Graphical models: probabilistic inference[R]//ARBIB M A. The Handbook of Brain Theory and Neural Networks. Cambridge:MIT Press, 2002.

引证文献6

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部