期刊文献+

并行免疫克隆特征选择算法 被引量:5

Parallel immune clonal selection for feature selection
下载PDF
导出
摘要 针对模式识别中传统的封装式特征选择算法,难以得到较好的特征子集和复杂度较高的分类器评价特征子集的耗时问题,提出了一种用于特征选择的并行免疫克隆算法,采用免疫克隆算法搜索特征,并利用并行算法评价特征子集,即将种群中个体的适应度计算并行在多个计算节点上同时进行.将该算法在Linux刀片集群上基于MPICH软件对UCI数据集进行特征子集选择算法仿真,特征子集采用最近邻分类并采用留一法验证评价.结果表明该算法选出的特征子集优于经典的顺序浮动前向搜索算法和标准遗传算法,与串行算法运行时间相比,在40个CPU时其加速比最高可达29.57. Focusing on the time-consuming problem of wrapper feature selection when the feature subset is evaluated using high-complexity classifiers in pattern recognition, a novel parallel immune clonal selection for feature selection algorithm (PICFS) is proposed. The presented method uses an immune clonal selection for feature selection~ fitness of feature subset fitness is determined by evaluating the nearest neighbor classifier with leave-one-out cross-validation in multiple computing nodes at the same time. Experimental results on several standards UCI dataset sets show that the proposed algorithm outperforms the conventional genetic algorithm and classical sequential floating forward search algorithm in terms of classification accuracy and greatly reduce the running time based on MPICH using the Linux blade cluster, we have achieved a speed-up as high as 29.57 even when up to 40 processors are used.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2008年第5期853-857,共5页 Journal of Xidian University
基金 国家863项目资助(2006AA01Z107) 国家自然科学基金资助(60703109 60603019) 高等学校博士学科点专项科研基金资助(20070701016)
关键词 模式识别 并行算法 特征选择 分类 pattern recognition parallel algorithms feature selection classification
  • 相关文献

参考文献6

  • 1Kudo M, Sklansky J. Comparison of Algorithms that Select Features for Pattern Classifiers [J]. Pattern Recognition, 2000, 33(1): 25-41.
  • 2杜海峰,公茂果,焦李成,刘若辰.用于高维函数优化的免疫记忆克隆规划算法[J].自然科学进展,2004,14(8):925-933. 被引量:19
  • 3Buyya R. High Performance Cluster Computing [M]. NJ: Prentice-Hall, 1999.
  • 4丛琳,沙宇恒,焦李成.采用正交免疫克隆粒子群算法求解SAT问题[J].西安电子科技大学学报,2007,34(4):616-621. 被引量:6
  • 5Oh I S, Lee J S, Moon B R. Hybrid Genetic Algorithms for Feature Selection [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2004, 26(11) : 1 424 -1 437.
  • 6Blake C L, Keogh E, Merz C J. UCI Repository of Machine Learning Databases [DB/OL]. [2007-10-15]. http://www. ics. uci. edu/-mlearn/MLRepository. html.

二级参考文献15

  • 1杜海峰,公茂果,焦李成,刘若辰.用于高维函数优化的免疫记忆克隆规划算法[J].自然科学进展,2004,14(8):925-933. 被引量:19
  • 2黄训诚,庄奕琪,耿阿囡.基于粒子群优化算法的集成电路无网格布线[J].西安电子科技大学学报,2007,34(1):34-37. 被引量:6
  • 3[9]陆德源,等.现代免疫学.上海:上海科技教育出版社,1998
  • 4[10]Muhlenbein H, et al. Predictive models for the breeder genetic algorithm. Evolutionary Computation, 1993, 1 (1): 25
  • 5[11]Leung Y W, et al. An orthogonal genetic algorithm with quantization for global numerical optimization. IEEE Transactions on Evolutionary Computation, 2001, 5(1): 41
  • 6[1]Dasgupta D, et al. Artificial immune systems in industrial applications. In: IPMM′99. Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials.IEEE Press, 1999. 257~267
  • 7[3]Cooper K D, et al. Procedure cloning. In: Proceedings of the 1992International Conference on Computer Languages. IEEE Press,1992. 96~ 105
  • 8[4]BalazinskA M, et al. Advanced clone-analysis to support object-oriented system refactoring. In: Proceedings: Seventh Working Conference on Reverse Engineering, IEEE Press, 2000. 98
  • 9[5]Esmaili N, et al. Behavioural cloning in control of a dynamic system. In: IEEE International Conference on Systems, Man and Cybernetics Intelligent Systems for the 21st Century. 1995, 3:2904
  • 10[6]Hybinette M, et al. Cloning: A novel method for interactive parallel simulation. In: Proceedings of the 1997 Winter Simulation Conference. IEEE Press, 1997. 444

共引文献23

同被引文献43

引证文献5

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部