期刊文献+

乳腺图像微钙化簇主动学习检测新方法 被引量:2

New method for microcalcification clusteres detection using active learning in the mammogram
下载PDF
导出
摘要 提出一种基于主动学习的微钙化簇区域检测新算法,利用方向差分滤波器组对微钙化区域进行增强和特征提取,同时抑制高亮血管和导管等复杂区域的干扰;利用基于Bootstrap的主动学习样本方法进行样本选择和分类器训练;采用训练后的分类器实现乳腺X-线图像中钙化簇区域检测.实验结果表明,相对于被动学习的分类器检测效果,新算法在保持检出率的同时使假阳性率降低了约4.7%,取得了较好的检测效果. A new approach to microcalcification clusters detection is proposed, based on active learning. The proposed algorithm first enhances the microcalcification region with a directional difference filter bank which effectively realizes the feature extraction and meanwhile suppresses the blood vessels and mammary duts. Then the active sample selecting method based on Bootstrap is employed to select the training set and train the Baysian classifier. Finally the obtained classifier can be used to detectmicrocalcification clusters in the mammogram. Experimental results show that the proposed algorithm achieves good performance. Compared with the traditional passive learning methods, the new algorithm reduce the false positive rate 4.7 % by keeping the same sensitivity.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2008年第5期871-877,共7页 Journal of Xidian University
基金 国家自然科学基金资助(60771068) 973项目资助(2006CB705700) 陕西省自然科学基金资助(2007F248)
关键词 方向差分滤波器 主动学习 分类器 微钙化簇 特征提取 directional difference filter bank active learning classifiers microcalcification clusters feature extraction
  • 相关文献

参考文献13

  • 1Cheng H D, Cai X P, Chen X W, et al. Computer-aided Detection and Classification of Microcalcifieations in Mammograms: a Survey [J]. Pattern Recognition, 2003, 36(12): 2 967-2 991.
  • 2Arodz T, Kurdziel M, Popiela T J, et al. Detection of Clustered Microcalcifications in Small Field Digital Mammography [J]. Computer Methods and Programs in Biomedicine, 2006, 81(1): 56-65.
  • 3Strickland R N, Hahn H I. Wavelet Transform for Detecting Microcalcifications in Mammograms [J]. IEEE Trans on Med Imag, 1996, 15(2): 218-229.
  • 4李映,焦李成.基于核Fisher判别分析的目标识别[J].西安电子科技大学学报,2003,30(2):179-182. 被引量:37
  • 5胡方明,简琴,张秀君.基于BP神经网络的车型分类器[J].西安电子科技大学学报,2005,32(3):439-442. 被引量:22
  • 6王颖,高新波.基于支持向量机和相关反馈技术的肿块检测算法[J].西安电子科技大学学报,2007,34(2):239-245. 被引量:2
  • 7Nakayama R, Uchiyama Y, Yamamoto K, et al. Computer-Aided Diagnosis Scheme Using a Filter Bank for Detection of Microcalcification Clusters in Mammograms[J]. IEEE Trans on Biomed Eng, 2006, 53(2): 273-283.
  • 8Shimizu A, Toriwaki J, Hasegawa J. Characteristics of Rotatory Second Order Difference Filter for Computer Aided Diagnosis of Medical Images [J]. System Compute in Japan, 1995, 26(11) : 38-51.
  • 9宫秀军,孙建平,史忠植.主动贝叶斯网络分类器[J].计算机研究与发展,2002,39(5):574-579. 被引量:37
  • 10Valiant L. A Theory of Learnable [J]. Communications of the ACM, 1984, 27 (11): 1 134-1 142.

二级参考文献11

共引文献94

同被引文献28

  • 1何鸣,李国正,袁捷.医学诊断中集成学习技术的研究[J].计算机工程与应用,2006,42(28):218-220. 被引量:5
  • 2李青,焦李成.利用集成支撑矢量机提高分类性能[J].西安电子科技大学学报,2007,34(1):68-70. 被引量:6
  • 3王颖,高新波.基于支持向量机和相关反馈技术的肿块检测算法[J].西安电子科技大学学报,2007,34(2):239-245. 被引量:2
  • 4Hansen L K, Salamon P. Neural Network Ensembles [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 1990, 12(10): 993-1001.
  • 5Li Ying, Jiang Jianmin. Combination of SVM Knowledge for Mierocalcification Detection in Digital Mammograms [C]// IDEAL 2004, LNCS 3177. Berlin: Springer, 2004: 359-365.
  • 6Lanckriet G. Learning the Kernel Matrix with Semi-definite Programmming[J]. Journal of Machine Learning Research, 2004(5) : 27-72.
  • 7Skyrpnyk I. DIMACS Technical Center. Feature Selection and Training Set Sampling for Ensemble Learning on Hetergeneous Data[R]. New Jersey: the State University of New Jersey, 2003.
  • 8Rose C, Turi D, Williams A, et al. Digital Database for Screening Mammography[DB/OL]. [1998-08-20]. http:// marathon, csee. usf. edu/Mammography/Database, html.
  • 9ELCAP Lab, Weill Medical College of Cornell University. ELCAP Public Lung Image Database [DB/OL]. [2003-12- 20]. http://www, via. cornell, edu/lungdb, html.
  • 10Schapire R E. The Strength of Weak Learnability[J]. Machine Learning, 1990, 5(2) :197-227.

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部