摘要
提出一种基于主动学习的微钙化簇区域检测新算法,利用方向差分滤波器组对微钙化区域进行增强和特征提取,同时抑制高亮血管和导管等复杂区域的干扰;利用基于Bootstrap的主动学习样本方法进行样本选择和分类器训练;采用训练后的分类器实现乳腺X-线图像中钙化簇区域检测.实验结果表明,相对于被动学习的分类器检测效果,新算法在保持检出率的同时使假阳性率降低了约4.7%,取得了较好的检测效果.
A new approach to microcalcification clusters detection is proposed, based on active learning. The proposed algorithm first enhances the microcalcification region with a directional difference filter bank which effectively realizes the feature extraction and meanwhile suppresses the blood vessels and mammary duts. Then the active sample selecting method based on Bootstrap is employed to select the training set and train the Baysian classifier. Finally the obtained classifier can be used to detectmicrocalcification clusters in the mammogram. Experimental results show that the proposed algorithm achieves good performance. Compared with the traditional passive learning methods, the new algorithm reduce the false positive rate 4.7 % by keeping the same sensitivity.
出处
《西安电子科技大学学报》
EI
CAS
CSCD
北大核心
2008年第5期871-877,共7页
Journal of Xidian University
基金
国家自然科学基金资助(60771068)
973项目资助(2006CB705700)
陕西省自然科学基金资助(2007F248)
关键词
方向差分滤波器
主动学习
分类器
微钙化簇
特征提取
directional difference filter bank
active learning
classifiers
microcalcification clusters
feature extraction