期刊文献+

部分线性模型非参数部分的多项式关系检验 被引量:2

Testing Polynomial Relationships of the Nonparametric Component in Partially Linear Models
下载PDF
导出
摘要 对于部分线性模型中非参数部分是否为某一特定阶数的多项式函数的检验问题,本文基于比较原假设与备择假设下模型拟合的残差平方和的思想构造了检验统计量,给出了计算检验p-值的精确方法和三阶矩χ2逼近方法。另外我们讨论了广义似然比检验统计量的构造,并给出了其在原假设下的渐近分布。最后通过数值模拟验证了我们所提检验方法的有效性。 To test whether the nonparametric component of a partially linear model is a polynomial of a certain degree, we propose in this article a test statistic which is based on the comparision of the residual sum of squares under null and alternative hypotheses. A procedure for computing the exact pvalue of the test is proposed. For computational consideration in practice, a method to approximate the p-value is derived by employing the three-moment χ^2 approximation. We also construct a generalized likelihood ratio statistic, and its asymptotic null distribution is established. Finally, some simulations are conducted to examine the performance of our test procedure and the results are satisfactory.
出处 《工程数学学报》 CSCD 北大核心 2008年第5期857-866,共10页 Chinese Journal of Engineering Mathematics
基金 国家社会科学基金(07CTJ003) 国家自然科学基金重点项目(10431010)
关键词 部分线性模型 Profile最小二乘估计 残差平方和 广义似然比检验统计量 三阶矩χ2逼近 generalized likelihood ratio test statistic partially linear models profile least-squares estimation residual sum of squares three-moment χ^2 approximation
  • 相关文献

参考文献21

  • 1Engle R F, Granger W J, Rice J, et al. Semiparametric estimates of the relation between weather and electricity sales[J]. J Amer Statist Assoc, 1986, 80:310-319.
  • 2Chen H. Convergence rates for parametric components in a partially linear model[J]. Ann Statist, 1988, 16: 136-146.
  • 3Donald G, Newey K. Series estimation of semilinear models[J]. J Multi Anal, 1994, 50:30-40.
  • 4Heckman N. Spline smoothing in a partially linear model[J]. J Roy Statist Soc Ser B, 1986, 48:244-248.
  • 5Robinson P. Root-n-consistent semiparametric regression[J]. Econometrica, 1988, 56:931-954.
  • 6Speckman P. Kernel smoothing in partial linear models[J]. J Roy Statist Soc Ser B, 1988, 50:413-436.
  • 7Yatchew A. An elementary estimator of the partial linear mdoel[J]. Economics Letters, 1997, 57:135-143.
  • 8Fan J, Huang L. Goodness-of-fit tests for parametric regression models[J]. J Amer Statist Assoc, 2001, 96: 640-652.
  • 9Gonzalez-Manteiga W, Aneiros-Perez G. Testing in partial linear regression models with dependent errors[J]. J Nonpa Stat, 2003, 15:93-111.
  • 10Crainiceanu C, Ruppert D, Claeskens G, Wand W P. Exact likelihood ratio tests for penalised splines[J]. Biometrika, 2005, 92(1): 91-103.

二级参考文献18

  • 1[1]Yanagimoto T and Yanagimoto M. The use of marginal likelihood for a diagnostic test for the goodness of fit of the simple linear regression model. Technometrics, 1987, 29: 95-101.
  • 2[2]Cox D, Koh E, Wahba G and Yandell B S. Testing the (parametric) null model hypothesis in (semiparametric) partial and generalized spline models. The Annals of Statistics, 1988, 16: 113-119.
  • 3[3]Eubank R L and Spiegelman C H. Testing the goodness of fit of a linear model via nonparametric regression techniques. Journal of the American Statistical Association, 1990, 85: 387-392.
  • 4[4]Jayasuriya B R. Testing for polynomial regression using nonparametric regression techniques. Journal of the American Statistical Association, 1996, 91: 1626-1631.
  • 5[5]Azzalini A, Bowman A W and Hardle W. On the use of nonparametric regression for model checking. Biometrika, 1989, 76: 1-11.
  • 6[6]Hardle W and Mammen E. Comparing nonparametric versus parametric regression fits. The Annals of Statistics, 1993, 21: 1926-1947.
  • 7[7]Hjellvik V and Tjφstheim D. Nonparametric tests of linearity for time series. Biometrika, 1995,82: 351-368.
  • 8[8]Cleveland W S. Robust locally weighted regression and smoothing scatterplots. Journal of the American Statistical Association, 1979, 74: 829-836.
  • 9[9]Cleveland W S and Devlin S J. Locally weighted regression: an approach to regression analysis by local fitting. Journal of the American Statistical Association, 1988, 83: 596-610.
  • 10[10]Fan J and Gijbels I. Local Polynomial Regression and Its Applications. London: Chapman and Hall, 1996.

共引文献20

同被引文献28

  • 1田萍,薛留根.纵向数据半参数回归模型估计的强相合性[J].工程数学学报,2006,23(2):369-372. 被引量:8
  • 2薛留根,朱力行.纵向数据下部分线性模型的经验似然推断[J].中国科学(A辑),2007,37(1):31-44. 被引量:11
  • 3罗羡华,李元,周勇,杨振海.基于纵向数据的半参数变系数部分线性回归模型[J].应用数学学报,2007,30(3):540-554. 被引量:6
  • 4Wang Q H,et al.Semiparametric regression analysis with missing response at random[J].J Amer Statist Assoc,2004,99:334-345.
  • 5Qin J,Lawless J.Empirical likelihood and general estimating equations[J].The Annals of Statistics,1994,22:300-325.
  • 6Chamberlain G.Efficient bounds for semiparametric regression[J].Econometrika,1992,60:567-596.
  • 7Mack Y P,Silverman B W.Weak and strong uniform consistency of kernel regression estimates[J].Z Wahrsch Verw Gebiete,1982,61:405-415.
  • 8Yates F.The analysis of replicated experiments when the field results are imcomplete[J].Emp J Exp Agric,1933,1:129-142.
  • 9Wang Q H,Rao J N K.Empirical likelihood for linear regression models under imputation for missing responses[J].The Canadian Journal of Statistics,2001,29:597-608.
  • 10Wang Q H,Sun Z H.Estimation in partially linear models with missing responses at random[J].Journal of Multivariate Analysis,2007,98:1470-1493.

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部